On Calculation of Monomial Automorphisms of Linear Cyclic Codes

V. S. Kugurakov ${ }^{1 *}$, A. Gainutdinova ${ }^{1 * *}$, and T. Anisimova ${ }^{1 * * *}$
(Submitted by F. M. Ablayev)
${ }^{1}$ Department of Theoretical Cybernetics, Institute of Computational Mathematics and Information Technologies, Kazan (Volga Region) Federal University, ul. Kremlevskaya 18, Kazan, Tatarstan, 420008 Russia Received December 6, 2017

Abstract

A description of the monomial automorphisms group of an arbitrary linear cyclic code in term of polynomials is presented. This allows us to reduce a task of code's monomial automorphisms calculation to a task of solving some system of equations (in general, nonlinear) over a finite field. The results are illustrated with examples of calculating the full monomial automorphisms groups for two codes.

DOI: 10.1134/S1995080218070168
Keywords and phrases: Linear cyclic codes, monomial automorphisms of codes.

1. INTRODUCTION

This paper is devoted to calculation of the full monomial automorphisms groups of linear cyclic codes. The knowledge of code's automorphisms allows us to refine a code's structure and can be used when designing error-correcting decoding algorithms. We start with needed definitions and notions. Let \mathbb{F}_{q} be a finite field of q elements, \mathbb{F}_{q}^{*} be its multiplicative group, \mathbb{F}_{q}^{n} be a set of vectors of length n over \mathbb{F}_{q}. Any non-empty set $C \subseteq \mathbb{F}_{q}^{n}$ is called a code over \mathbb{F}_{q} of length n; if C is a linear subspace over \mathbb{F}_{q}, then the code C is called a linear code. For short, we call a linear code V of length ν over \mathbb{F}_{q}, which is invariant under the cyclic shift of vectors, as $C(\nu, q)$-code.

A component-wise product of vectors $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ and $\mathbf{w}=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ is determined as $\mathbf{v} \circ \mathbf{w}=\left(v_{1} w_{1}, v_{2} w_{2}, \ldots, v_{n} w_{n}\right)$. For vectors $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in \mathbb{F}_{q}^{n}, \mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in$ $\left(\mathbb{F}_{q}^{*}\right)^{n}$, and a permutation $\pi=\left(\begin{array}{cccc}1 & 2 & \ldots & n \\ \pi(1) & \pi(2) & \ldots & \pi(n)\end{array}\right)$ on the set of indexes $I_{n}=\{1,2, \ldots, n\}$ (π is an element of symmetric group S_{n} on n points) we determine the following vectors: $\mathbf{v}^{\pi}=$ $\left(v_{\pi(1)}, v_{\pi(2)}, \ldots, v_{\pi(n)}\right)$ is a permutation of components of vector \mathbf{v} by the action $\pi ; \mathbf{v}^{(\pi, \mathbf{c})}=\left(c_{1} v_{\pi(1)}\right.$, $\left.c_{2} v_{\pi(2)}, \ldots, c_{n} v_{\pi(n)}\right)$ is a result of transformation of the vector \mathbf{v} under the action (π, \mathbf{c}).

Notice that $\left(\mathbf{v}^{\pi}\right)^{\rho}=\mathbf{v}^{\pi \rho}$ and $\left(\mathbf{v}^{(\pi, \mathbf{a})}\right)^{(\rho, \mathbf{b})}=\left(\mathbf{v}^{\pi} \circ \mathbf{a}\right)^{(\rho, \mathbf{b})}=\mathbf{v}^{\pi \rho} \circ \mathbf{a}^{\rho} \circ \mathbf{b}=\mathbf{v}^{\pi \rho} \circ \mathbf{a}^{(\rho, \mathbf{b})}$, where $\pi \rho$ is a product of permutations π and ρ with multiplication on the left, i.e $\pi \rho(x)=\pi(\rho(x)) \forall x \in I_{n}$.

For a code $V \subseteq \mathbb{F}_{q}^{n}, \quad \pi \in S_{n}, \quad \mathbf{c} \in\left(\mathbb{F}_{q}^{*}\right)^{n}$ we assume $V^{\pi}=\left\{\mathbf{v}^{\pi} \mid \mathbf{v} \in V\right\}, \quad V^{(\pi, \mathbf{c})}=V^{\pi} \circ \mathbf{c}=$ $\left\{\mathbf{v}^{(\pi, \mathbf{c})} \mid \mathbf{v} \in V\right\}$. A transformation (π, \mathbf{c}), preserving the code V, i.e. $V^{(\pi, \mathbf{c})}=V$, is called a monomial automorphism of the code V. A set $\operatorname{MAut}(V)$ of all such automorphisms forms a group with multiplication (on the left): $(\rho, \mathbf{b}) \times(\pi, \mathbf{a})=\left(\pi \rho, \mathbf{a}^{(\rho, \mathbf{b})}\right)$.

[^0]
[^0]: *E-mail: vladimir.kugurakov@kpfu.ru
 ${ }^{* *}$ ** E-mail: aida.ksu@gmail.com
 ${ }^{* * *}$ E-mail: tanya14-1995@mail.ru

