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Abstract—A description of the monomial automorphisms group of an arbitrary linear cyclic code in
term of polynomials is presented. This allows us to reduce a task of code’s monomial automorphisms
calculation to a task of solving some system of equations (in general, nonlinear) over a finite field.
The results are illustrated with examples of calculating the full monomial automorphisms groups for
two codes.
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1. INTRODUCTION

This paper is devoted to calculation of the full monomial automorphisms groups of linear cyclic codes.
The knowledge of code’s automorphisms allows us to refine a code’s structure and can be used when
designing error-correcting decoding algorithms. We start with needed definitions and notions. Let Fq

be a finite field of q elements, F∗
q be its multiplicative group, Fn

q be a set of vectors of length n over Fq.
Any non-empty set C ⊆ F

n
q is called a code over Fq of length n; if C is a linear subspace over Fq, then the

code C is called a linear code. For short, we call a linear code V of length ν over Fq, which is invariant
under the cyclic shift of vectors, as C(ν, q)-code.

A component-wise product of vectors v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn) is determined
as v ◦w = (v1w1, v2w2, . . . , vnwn). For vectors v = (v1, v2, . . . , vn) ∈ F

n
q , c = (c1, c2, . . . , cn) ∈

(
F
∗
q

)n, and a permutation π =

⎛

⎝ 1 2 . . . n

π(1) π(2) . . . π(n)

⎞

⎠ on the set of indexes In = {1, 2, . . . , n}

(π is an element of symmetric group Sn on n points) we determine the following vectors: vπ =

(vπ(1), vπ(2), . . . , vπ(n)) is a permutation of components of vector v by the action π; v(π,c) = (c1vπ(1),

c2vπ(2), . . . , cnvπ(n)) is a result of transformation of the vector v under the action (π, c).

Notice that (vπ)ρ = vπρ and (v(π,a))(ρ,b) = (vπ ◦ a)(ρ,b) = vπρ ◦ aρ ◦ b = vπρ ◦ a(ρ,b), where πρ is
a product of permutations π and ρ with multiplication on the left, i.e πρ(x) = π(ρ(x)) ∀x ∈ In.

For a code V ⊆ F
n
q , π ∈ Sn, c ∈ (F∗

q)
n we assume V π = {vπ |v ∈ V }, V (π,c) = V π ◦ c =

{v(π,c)|v ∈ V }. A transformation (π, c), preserving the code V , i.e. V (π,c) = V , is called a monomial
automorphism of the code V . A set MAut(V ) of all such automorphisms forms a group with
multiplication (on the left): (ρ,b)× (π,a) = (πρ,a(ρ,b)).
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