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Abstract—We determine some special functionals as sharp constants in integral inequalities for test
functions, defined on plane domains. First we prove a new one dimensional integral inequality. Also,
we prove some generalizations of a classical Rellich result for two dimensional case, when there is an
additional restriction for Fourier coefficients of the test functions. In addition, we examine a Rellich
type inequality in plane domains with infinite Euclidean maximal modulus. As an application of our
results we present a new simple proof of a remarkable theorem of P. Caldiroli and R. Musina from
their paper “Rellich inequalities with weights”, published in Calc. Var. 45 (2012), 147–164.
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1. INTRODUCTION

The original inequality of F. Rellich (see [1]) deals with test functions in the domain Ω = R
d \ {0} of

the Euclidean space R
d. In the case d = 2 the Rellich inequality becomes to be non-trivial for functions

with vanishing first Fourier coefficients, only.
There are many generalization of Rellich’s result for the Laplace operator and polyharmonic operators

in Ω = R
d \ {0} (see [2–8]). Also, there is a few papers on the Rellich type inequalities considered for

test functions in domains Ω �= R
d \ {0} (see [9–12]).

In the book [13] by A.A. Balinsky, W.D. Evans and R.T. Lewis the reader may find the basic results
on the Hardy and Rellich type inequalities with detailed proofs.

In this paper we will consider plane domains Ω ⊂ C, Ω �= C. Let dist(z, ∂Ω) be the distance from the
point z = x+ iy ∈ Ω to the boundary of the domain. Let C∞

0 (Ω) be the family of smooth complex-valued
functions with compact supports in the domain Ω �= C.

We will study the following variational Rellich type inequality: for any function f ∈ C∞
0 (Ω)∫∫

Ω

|Δf(z)|2
(dist(z, ∂Ω))−2+2μ

dx dy ≥ c2μ(Ω)

∫∫

Ω

|f(z)|2
(dist(z, ∂Ω))2+2μ

dx dy, (1)

where z = x+ iy ∈ Ω, Δ denotes the Laplace operator, μ is a fixed real number, the constant c2μ(Ω) ∈
[0,∞) is defined to be maximal, i.e. it is defined by the following formula

c2μ(Ω) = inf
f∈C∞

0 (Ω),f �≡0

∫∫
Ω |Δf(z)|2(dist(z, ∂Ω))2−2μdx dy∫∫
Ω |f(z)|2(dist(z, ∂Ω))−2−2μdx dy

.

Notice that c2μ(Ω) is invariant under linear conformal transformation. More precisely, one has that

c2μ(Ω) = c2μ(aΩ+ b), (2)
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