ISSN 1995-0802, Lobachevskii Journal of Mathematics, 2018, Vol. 39, No. 5, pp. 639-646. C Pleiades Publishing, Ltd., 2018.

Rellich Type Inequalities with Weights in Plane Domains

F. G. Avkhadiev*

(Submitted by A. M. Elizarov)

Kazan Federal University, ul. Kremlevskaya 18, Kazan, 420008 Russia Received December 6, 2017

Abstract—We determine some special functionals as sharp constants in integral inequalities for test functions, defined on plane domains. First we prove a new one dimensional integral inequality. Also, we prove some generalizations of a classical Rellich result for two dimensional case, when there is an additional restriction for Fourier coefficients of the test functions. In addition, we examine a Rellich type inequality in plane domains with infinite Euclidean maximal modulus. As an application of our results we present a new simple proof of a remarkable theorem of P. Caldiroli and R. Musina from their paper "Rellich inequalities with weights", published in Calc. Var. **45** (2012), 147–164.

DOI: 10.1134/S1995080218050049

Keywords and phrases: *Rellich inequality, plane domain, uniformly perfect set, Euclidean maximal modulus, sharp constant.*

1. INTRODUCTION

The original inequality of F. Rellich (see [1]) deals with test functions in the domain $\Omega = \mathbb{R}^d \setminus \{0\}$ of the Euclidean space \mathbb{R}^d . In the case d = 2 the Rellich inequality becomes to be non-trivial for functions with vanishing first Fourier coefficients, only.

There are many generalization of Rellich's result for the Laplace operator and polyharmonic operators in $\Omega = \mathbb{R}^d \setminus \{0\}$ (see [2–8]). Also, there is a few papers on the Rellich type inequalities considered for test functions in domains $\Omega \neq \mathbb{R}^d \setminus \{0\}$ (see [9–12]).

In the book [13] by A.A. Balinsky, W.D. Evans and R.T. Lewis the reader may find the basic results on the Hardy and Rellich type inequalities with detailed proofs.

In this paper we will consider plane domains $\Omega \subset \mathbb{C}$, $\Omega \neq \mathbb{C}$. Let $\operatorname{dist}(z, \partial \Omega)$ be the distance from the point $z = x + iy \in \Omega$ to the boundary of the domain. Let $C_0^{\infty}(\Omega)$ be the family of smooth complex-valued functions with compact supports in the domain $\Omega \neq \mathbb{C}$.

We will study the following variational Rellich type inequality: for any function $f \in C_0^{\infty}(\Omega)$

$$\iint_{\Omega} \frac{|\Delta f(z)|^2}{(\operatorname{dist}(z,\partial\Omega))^{-2+2\mu}} dx \, dy \ge c_{2\mu}(\Omega) \iint_{\Omega} \frac{|f(z)|^2}{(\operatorname{dist}(z,\partial\Omega))^{2+2\mu}} dx \, dy,\tag{1}$$

where $z = x + iy \in \Omega$, Δ denotes the Laplace operator, μ is a fixed real number, the constant $c_{2\mu}(\Omega) \in [0, \infty)$ is defined to be maximal, i.e. it is defined by the following formula

$$c_{2\mu}(\Omega) = \inf_{f \in C_0^{\infty}(\Omega), f \neq 0} \frac{\iint_{\Omega} |\Delta f(z)|^2 (\operatorname{dist}(z, \partial \Omega))^{2-2\mu} dx \, dy}{\iint_{\Omega} |f(z)|^2 (\operatorname{dist}(z, \partial \Omega))^{-2-2\mu} dx \, dy}$$

Notice that $c_{2\mu}(\Omega)$ is invariant under linear conformal transformation. More precisely, one has that

$$c_{2\mu}(\Omega) = c_{2\mu}(a\Omega + b), \tag{2}$$

^{*}E-mail: avkhadiev47@mail.ru