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Abstract

©  2018  Institute  of  Physics  Publishing.  All  rights  reserved.  Nowadays  the  prediction  of
ionospheric  parameters  is  an important  and acute problem in the field  of  ensuring stable
operation of radio communication and radio navigation facilities. The network of two-frequency
GPS receivers data is used for monitoring the ionospheric condition. Based on these data, a
number of laboratories are building global maps of total electron content (TEC). There are
strong spatial and temporal correlations in the TEC maps. As a result, in order to successfully
solve the problem of TEC prediction, it is advisable to perform preliminary processing of maps
data with dimensionality reduction. In this paper, the problem of constructing a low-dimensional
model of global distribution of the TEC is solved. In addition, the model of global distribution of
the TEC can be useful for the ionosphere dynamics investigation. In this paper, it is proposed to
use dense convolutional auto encoders as a base element of the model. This architecture allows
us to speed up the neural network learning process and avoid the gradient-vanishing problem in
error backpropagation algorithm.
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