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Abstract

©  2018  Bentham  Science  Publishers.  Inflammation  and  the  ways  for  its  regulation:  The
development  of  an  effective  system for  the  treatment  of  inflammatory  diseases  requires
comprehensive studies of the cellular signaling molecular networks comprising responses to
various  stressors,  including  pathogenic  and  non-pathogenic  microorganisms.  Significant
attention on fundamental  and applied research has recently  focused on inducers of  hemе
oxygenase-1 (HO-1) and inhibitors of the expression of this enzyme, which regulates expression
of this and other cytoprotective molecules and modulation of inflammation. Recent studies
indicate that mycoplasmas (a major group of human pathogens of the Mollicutes) are capable of
modulating inflammatory responses through the activation of the Nrf2 and the expression of
HO-1. In vitro experiments demonstrate that the membrane lipoproteins (LAMPs), along with
lipoprotein derivatives (lipopeptide MALP-2) in mycoplasmas cause a "cross-talk" between the
pro-and  anti-inflammatory  signaling  pathways.  Importantly,  lipopeptide/lipoprotein-induced
expression of HO-1 tends to suppress inflammation. Conclusion: The study of the molecular
network  that  causes  the  corresponding  outcome  can  facilitate  the  development  of  new
approaches for the treatment of inflammatory processes. The derivatives of LAMPs and MALP-2
and of their analogues may prove promising for the treatment of diseases associated with
chronic inflammation.
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