Palladium Nanoparticles-Polypyrrole Composite as Effective Catalyst for Fluoroalkylation of Alkenes

T. V. Gryaznova ${ }^{1} \cdot$ M. N. Khrizanforov ${ }^{1} \cdot$ K. V. Kholin ${ }^{1} \cdot$ M. A. Vorotyntsev ${ }^{2,3,4,5} \cdot$ K. V. Gor'kov ${ }^{3} \cdot$ N. V. Talagaeva ${ }^{3} \cdot$ M. V. Dmitrieva ${ }^{3}$ • E. V. Zolotukhina ${ }^{3,4}$ • Y. H. Budnikova ${ }^{1,6}$

Received: 28 May 2018 / Accepted: 9 August 2018 / Published online: 18 August 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

Palladium nanoparticles-polypyrrole composite ($\mathrm{Pd} / \mathrm{PPy}$) catalyzes the addition of perfluoroalkyl halides to olefins to produce a variety of products with good yields. An effective fluoroalkylation technique tested with various olefins, fluoroalkyl halides and $\mathrm{Pd} / \mathrm{PPy}$ was developed. The reaction proceeds highly efficient under mild phosphine-free reaction conditions with different substrates, easy catalyst recycling and provides a general and straightforward access to fluoroalkylated products. Furthermore, we were able to control whether the addition of perfluoroalkyl occurs with various monomer (fluoroalkylated alkene or alkane with R_{F} and OH moieties) or dimer formation (under electrochemical conditions).

Graphical Abstract

Keywords Fluoroalkylation • Nanoparticles • Palladium • Polypyrrole composite

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10562-018-2524-z) contains supplementary material, which is available to authorized users.
Y. H. Budnikova
yulia@iopc.ru
Extended author information available on the last page of the article

1 Introduction

Palladium-catalyzed coupling of organic halides with olefins is well-established in modern organic synthesis as a procedure for the formation of new $\mathrm{C}-\mathrm{C}$ bond in a target organic molecule [1-5]. However, curiously enough, the metal-catalyzed fluoroalkylation of alkenes is less studied

