J. Chem. Thermodynamics 116 (2018) 76-84

Contents lists available at ScienceDirect I. Chem. Thermodynamics

journal homepage: www.elsevier.com/locate/jct

THE FOLIANCE OF CHARGEN THERMODYNAMICS

CrossMark

Thermodynamic properties of myo-inositol

A.V. Knyazev^{a,*}, V.N. Emel'yanenko^{b,c,*}, A.S. Shipilova^a, D.H. Zaitsau^c, M.I. Lelet^a, S.S. Knyazeva^a, E.V. Gusarova^a, M.A. Varfolomeev^b

^a Lobachevsky University, Gagarin Prospekt 23/2, 603950 Nizhni Novgorod, Russia

^b Department of Physical Chemistry, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russia

^c Department of Physical Chemistry and Department, Science and Technology of Life, Light and Matter, University of Rostock, Dr.-Lorenz-Weg 1, D-18059 Rostock, Germany

ARTICLE INFO

Article history: Received 2 July 2017 Received in revised form 24 August 2017 Accepted 26 August 2017 Available online 30 August 2017

Keywords: Vitamin B₈ Myo-inositol Adiabatic vacuum calorimetry Heat capacity Combustion calorimetry Thermodynamic functions

ABSTRACT

In the present work, the temperature dependence of heat capacity of vitamin B_8 (myo-inositol) has been measured for the first time over the range from 8 K to 340 K by precision adiabatic vacuum calorimetry. Based on the experimental data, the thermodynamic functions of the vitamin B_8 , namely, the heat capacity, enthalpy $H^\circ(T)-H^\circ(0)$, entropy $S^\circ(T)-S^\circ(0)$ and Gibbs function $G^\circ(T)-H^\circ(0)$ have been determined for the range from $T \to 0$ K to 340 K. The value of the fractal dimension D in the function of multifractal generalization of Debye's theory of the heat capacity of solids was estimated and the character of heterodynamics of structure was detected. The enthalpy of combustion (-2747.0 ± 2.1) kJ·mol⁻¹ of the vitamin B_8 was measured for the first time using high-precision combustion calorimeter. The standard molar enthalpy of formation in the crystalline state (-1329.3 ± 2.3) kJ·mol⁻¹ of B_8 at 298.15 K was derived from the combustion experiments. Using combination of the adiabatic and combustion calorimetry results the thermodynamic functions of formation of the myo-inositol at T = 298.15 K and p = 0.1 MPa have been calculated. The low-temperature X-ray diffraction was used for the determination of coefficients of thermal expansion.

© 2017 Elsevier Ltd.

1. Introduction

Myo-inositol (CAS: 87-89-8) is a sugar alcohol (isomer of glucose) widely distributed in plant and animal tissues. It is found in food, for example cereals with high bran content (buckwheat), nuts, beans, and fruit [1]. It plays an important role as the structural basis for a number of secondary messengers in eukaryotic cells, including inositol phosphates (phytic acid), phosphatidylinositol and phosphatidylinositol phosphate lipids. Inositol itself is not considered as a vitamin because it can be synthesized by the human body. On the other hand, myo-inositol was classified as a member of the vitamin B-complex (often called vitamin B₈). Patients suffering from clinical depression generally have decreased levels of inositol in their cerebrospinal fluid [2].

This work is a continuation of systematic studies of vitamins B. Earlier in the articles [3–6], we have investigated the thermodynamic properties of vitamins B_n (n = 2, 3, 9, 12). The goals of this work include calorimetric determination of the standard thermody-

namic functions of the myo-inositol with the purpose of describing biochemical and industrial processes with its participation.

2. Experimental

2.1. Sample

Myo-inositol was purchased from NutriVitaShop. For phase identification, an X-ray diffraction pattern of the vitamin B₈ sample was recorded on a Shimadzu X-ray diffractometer XRD-6000 (CuK_{α} radiation, geometry θ -2 θ) in the 2 θ range from 5° to 60° with scan increment of 0.02°. The water content in myo-inositol was determined by Karl Fischer titration. The water content of the compound is below the detection limit (0.05 wt%), so there is no crystallization and sorption water in the compound. The X-ray data, Karl Fischer titration and NutriVitaShop certificate led us to conclude that the myo-inositol sample studied (the content of impurities 0.1 wt%) was an individual crystalline compound (monoclinic modification, space group P2₁/c [7]).

2.2. Apparatus and measurement procedure

To measure the heat capacity C_p^o of the tested substance over the range from 8 K to 340 K, a BKT-3.0 automatic precision

^{*} Corresponding authors at: Department of Physical Chemistry, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russia. Tel.: +49-381-498-6499; fax +49-381-498-6524 (V.N. Emel'yanenko); Tel.: +7-831-462-32-34; fax +7-831-434-50-56 (A.V. Knyazev).

E-mail addresses: knyazevav@gmail.com (A.V. Knyazev), vladchimic@tut.by (V.N. Emel'yanenko).