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Abstract

Wiley Periodicals, Inc. © 2018 International League Against Epilepsy Objective: The epilepsy-
aphasia  spectrum  (EAS)  is  a  heterogeneous  group  of  age-dependent  childhood  disorders
characterized by sleep-activated discharges associated with infrequent seizures and language,
cognitive, and behavioral deficits. Defects in the GRIN2A gene, encoding a subunit of glutamate-
gated N-methyl-d-aspartate (NMDA) receptors,  represent  the most  important  cause of  EAS
identified so far.  Neocortical  or  thalamic lesions were detected in a subset of  severe EAS
disorders,  and  more  subtle  anomalies  were  reported  in  patients  with  so-called  “benign”
phenotypes.  However,  whether  brain  structural  alterations  exist  in  the  context  of  GRIN2A
defects is unknown. Methods: Magnetic resonance diffusion tensor imaging (MR-DTI) was used
to perform longitudinal  analysis  of  the brain at  3 developmental  timepoints in  living mice
genetically  knocked  out  (KO)  for  Grin2a.  In  addition,  electroencephalography  (EEG)  was
recorded using multisite extracellular electrodes to characterize the neocortical activity in vivo.
Results: Microstructural alterations were detected in the neocortex, the corpus callosum, the
hippocampus, and the thalamus of Grin2a KO mice. Most MR-DTI alterations were detected at a
specific developmental stage when mice were aged 30 days, but not at earlier (15 days) or later
(2 months) ages. EEG analysis detected epileptiform discharges in Grin2a KO mice in the third
postnatal week. Significance: Grin2a KO mice replicated several anomalies found in patients
with  EAS  disorders.  Transient  structural  alterations  detected  by  MR-DTI  recalled  the  age-
dependent course of EAS disorders, which in humans start during childhood and show variable
outcome at the onset of adolescence. Together with the epileptiform discharges detected in
young Grin2a KO mice, our data suggested the existence of early anomalies in the maturation of
the  neocortical  and  thalamocortical  systems.  Whereas  the  possible  relationship  of  those
anomalies with sleep warrants further investigations, our data suggest that Grin2a KO mice may
serve as an animal model to study the neuronal mechanisms of EAS disorders and to design
new therapeutic strategies.

http://dx.doi.org/10.1111/epi.14543

Keywords

brain structure, EEG, epilepsy-aphasia, mouse model, MR-DTI

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kazan Federal University Digital Repository

https://core.ac.uk/display/197477499?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1111/epi.14543


References

[1] Tassinari CA, Cantalupo G, Dalla Bernardina B, et al. Encephalopathy related to status epilepticus during slow
sleep  (ESES)  including  Landau-Kleffner  syndrome.  In:  Epileptic  Syndromes  in  Infancy,  Childhood  and
Adolescence. Montrouge, France: John Libbey Eurotext Ltd, 2012; p. 255–75

[2] Carvill GL, Regan BM, Yendle SC, et al. GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nat
Genet. 2013;45:1073–6

[3] Lemke JR, Lal D, Reinthaler EM, et al. Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes.
Nat Genet. 2013;45:1067–72

[4] Lesca G, Rudolf G, Bruneau N, et al. GRIN2A mutations in acquired epileptic aphasia and related childhood
focal epilepsies and encephalopathies with speech and language dysfunction. Nat Genet. 2013;45:1061–6

[5] Bartolini E, Falchi M, Zellini F, et al. The syndrome of polymicrogyria, thalamic hypoplasia, and epilepsy with
CSWS. Neurology. 2016;86:1250–9

[6] Nieuwenhuis L,  Nicolai  J.  The pathophysiological  mechanisms of cognitive and behavioral  disturbances in
children with Landau-Kleffner syndrome or epilepsy with continuous spike-and-waves during slow-wave sleep.
Seizure. 2006;15:249–58

[7] Egger K, Janz P, Dobrossy MD, et al. Microstructural effects of a neuro-modulating drug evaluated by diffusion
tensor imaging. NeuroImage. 2016;127:1–10

[8] Gupta M, Mishra SK, Kumar BS, et al. Early detection of whole body radiation induced microstructural and
neuroinflammatory changes in hippocampus: a diffusion tensor imaging and gene expression study. J Neurosci
Res. 2017;95:1067–78

[9] Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research.
Neuron. 2006;51:527–39

[10] Muller HP, Vernikouskaya I, Ludolph AC, et al. Fast diffusion tensor magnetic resonance imaging of the mouse
brain at ultrahigh-field: aiming at cohort studies. PLoS One. 2012;7:e53389

[11] Bockhorst KH, Narayana PA, Liu R, et al. Early postnatal development of rat brain: in vivo diffusion tensor
imaging. J Neurosci Res. 2008;86:1520–8

[12] Chahboune H, Ment LR, Stewart WB, et al. Neurodevelopment of C57B/L6 mouse brain assessed by in vivo
diffusion tensor imaging. NMR Biomed. 2007;20:375–82

[13] Mori S, Itoh R, Zhang J, et al. Diffusion tensor imaging of the developing mouse brain. Magn Reson Med.
2001;46:18–23

[14] Zhang J, Richards LJ, Yarowsky P, et al. Three-dimensional anatomical characterization of the developing mouse
brain by diffusion tensor microimaging. NeuroImage. 2003;20:1639–48

[15] Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusio-
-tensor MRI. J Magn Reson. 1996;111:209–19

[16] Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion
and perfusion in neurologic disorders. Radiology. 1986;161:401–7

[17] Salmi M, Bruneau N, Cillario J, et al. Tubacin prevents neuronal migration defects and epileptic activity caused
by rat Srpx2 silencing in utero. Brain. 2013;136:2457–73

[18] Dulac O, Milh M, Holmes GL. Brain maturation and epilepsy. Handb Clin Neurol. 2013;111:441–6
[19] Semple BD, Blomgren K, Gimlin K, et al. Brain development in rodents and humans: identifying benchmarks of

maturation and vulnerability to injury across species. Prog Neurobiol. 2013;106–107:1–16
[20] Kim JH,  Kim DW, Kim JB,  et  al.  Thalamic involvement in paroxysmal kinesigenic dyskinesia:  a combined

structural and diffusion tensor MRI analysis. Hum Brain Mapp. 2015;36:1429–41
[21] Ryan NS, Keihaninejad S, Shakespeare TJ, et al. Magnetic resonance imaging evidence for presymptomatic

change in thalamus and caudate in familial Alzheimer's disease. Brain. 2013;136:1399–414
[22] Yang T, Guo Z, Luo C, et al. White matter impairment in the basal ganglia-thalamocortical circuit of drug-naive

childhood absence epilepsy. Epilepsy Res. 2012;99:267–73
[23] von Podewils F, Runge U, Kruger S, et al. Diffusion tensor imaging abnormalities in photosensitive juvenile

myoclonic epilepsy. Eur J Neurol. 2015;22:1192–200
[24] Aung WY, Mar S, Benzinger TL. Diffusion tensor MRI as a biomarker in axonal and myelin damage. Imaging

Med. 2013;5:427–40
[25] Mayer AR, Ling J, Mannell MV, et al. A prospective diffusion tensor imaging study in mild traumatic brain injury.

Neurology. 2010;74:643–50
[26] Budde MD, Janes L, Gold E, et al. The contribution of gliosis to diffusion tensor anisotropy and tractography

following traumatic brain injury: validation in the rat using Fourier analysis of stained tissue sections. Brain.
2011;134:2248–60



[27] Beaulieu C. The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed.
2002;15:435–55

[28] Hammelrath L, Skokic S, Khmelinskii A, et al. Morphological maturation of the mouse brain: an in vivo MRI and
histology investigation. NeuroImage. 2016;125:144–52

[29] Wu Y, Kawakami R, Shinohara Y, et al. Target-cell-specific left-right asymmetry of NMDA receptor content in
schaffer collateral synapses in epsilon1/NR2A knock-out mice. J Neurosci. 2005;25:9213–26

[30] Endele S, Rosenberger G, Geider K, et al. Mutations in GRIN2A and GRIN2B encoding regulatory subunits of
NMDA receptors cause variable neurodevelopmental phenotypes. Nat Genet. 2010;42:1021–6

[31] Ciumas C, Saignavongs M, Ilski F, et al. White matter development in children with benign childhood epilepsy
with centro-temporal spikes. Brain. 2014;137:1095–106

[32] Burnashev N, Szepetowski P. NMDA receptor subunit mutations in neurodevelopmental disorders. Curr Opin
Pharmacol. 2015;20:73–82

[33] Yu JT, Tan L. Diffusion-weighted magnetic resonance imaging demonstrates parenchymal pathophysiological
changes in epilepsy. Brain Res Rev. 2008;59:34–41

[34] Garcia-Ramos C, Jackson DC, Lin JJ, et al. Cognition and brain development in children with benign epilepsy
with centrotemporal spikes. Epilepsia. 2015;56:1615–22

[35] Thivard L, Adam C, Hasboun D, et al. Interictal diffusion MRI in partial epilepsies explored with intracerebral
electrodes. Brain. 2006;129:375–85

[36] Miyamoto  H,  Katagiri  H,  Hensch  T.  Experience-dependent  slow-wave  sleep  development.  Nat  Neurosci.
2003;6:553–4

[37] Luo C, Xia Y, Li Q, et al. Diffusion and volumetry abnormalities in subcortical nuclei of patients with absence
seizures. Epilepsia. 2011;52:1092–9

[38] Gong G, Concha L, Beaulieu C, et al. Thalamic diffusion and volumetry in temporal lobe epilepsy with and
without mesial temporal sclerosis. Epilepsy Res. 2008;80:184–93

[39] Kimiwada T, Juhasz C, Makki M, et al.  Hippocampal and thalamic diffusion abnormalities in children with
temporal lobe epilepsy. Epilepsia. 2006;47:167–75

[40] Agarwal R, Kumar A, Tiwari VN, et al. Thalamic abnormalities in children with continuous spike-wave during
slow-wave  sleep:  an  F-18-fluorodeoxyglucose  positron  emission  tomography  perspective.  Epilepsia.
2016;57:263–71

[41] Sakimura K, Kutsuwada T, Ito I, et al. Reduced hippocampal LTP and spatial learning in mice lacking NMDA
receptor epsilon 1 subunit. Nature. 1995;373:151–5

[42] Nobili L, Baglietto MG, Beelke M, et al. Spindles-inducing mechanism modulates sleep activation of interictal
epileptiform discharges in the Landau-Kleffner syndrome. Epilepsia. 2000;41:201–6

[43] Beenhakker MP, Huguenard JR. Neurons that fire together also conspire together: is normal sleep circuitry
hijacked to generate epilepsy? Neuron. 2009;62:612–32

[44] Borbely S, Halasy K, Somogyvari Z, et al. Laminar analysis of initiation and spread of epileptiform discharges in
three in vitro models. Brain Res Bull. 2006;69:161–7

[45] Wenzel M, Hamm JP, Peterka DS, et al. Reliable and elastic propagation of cortical seizures in vivo. Cell Rep.
2017;19:2681–93

[46] Paxinos G,  Franklin KBJ.  Paxinos and Franklin's  the Mouse Brain in  Stereotaxic  Coordinates.  Amsterdam:
Academic Press; 2013


