Chapter 5

Biosensor to Ensure Food Security and Environmental Control

G.A. Evtugyn

Chemistry Institute of Kazan Federal University, Kazan, Russian Federation E-mail: Gennady.Evtugyn@kpfu.ru

Chapter	Outline
---------	---------

1.	Introduction	121	3.4 Respiratory Activity	
2.	Biosensors for Food Additives		Inhibition	135
	and Quality Control	122	3.5 Microbial Fuel Cells	137
	2.1 Taste Sensing	128	4. Genotoxicity Biosensors	137
3.	Toxicity Biosensors	129	4.1 DNA Damage of Reactive	
	3.1 Cholinesterase-Based		Oxygen/Nitrogen Species	138
	Biosensors	129	4.2 Electrochemical Detection	
	3.2 Other Enzymatic		of the DNA Damage	139
	Sensors	131	5. Conclusion	145
	3.3 Bioluminescent Microbial		Acknowledgements	146
	Biosensors	132	References	147

1. INTRODUCTION

There is an urgent need in the simple and reliable instruments for the assessment of food quality and potential hazards related to the food processing and contamination. Although modern technologies in agriculture sufficiently decrease direct risks related to the toxic species in foodstuffs, the variety of chemicals applied in agriculture as well as underestimated contamination sources call for the further efforts in the above area.

Biosensors are portable analytical instruments that integrate biological recognition element (enzyme, antibody, DNA, whole cells) with appropriate transducer converting biochemical recognition in the electric signal [1]. To