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Effects of ATP and adenosine on contraction amplitude
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Abstract

© 2016 Wiley Periodicals, Inc. Introduction: The aim of this study was to evaluate the effects of
adenosine  5′-triphosphate  (ATP)  and adenosine  on  the  contractility  of  mammalian  skeletal
muscle under hypothermic conditions. Methods: Contractions of isolated rat soleus muscle were
induced by either electrical stimulation (ES) or carbachol at physiological temperatures (37°C)
and  hypothermic  conditions  (30–14°C)  and  recorded  in  the  presence  of  ATP,  adenosine,
suramin, and 8-(p-sulfophenyl)-theophylline (8-SPT). Results: At 37°C, incubation of the muscles
with ATP inhibited ES-induced contractions; the inhibitory effect of ATP disappeared at 14°C.
Adenosine inhibited ES-induced contractions at all temperature levels; 8-SPT fully prevented the
action  of  adenosine.  ATP  and  adenosine  did  not  significantly  affect  carbachol-induced
contractions  at  37°C,  while  at  lower  temperatures  ATP  potentiated  them.  Suramin  fully
prevented effects of ATP. Conclusions: ATP is involved in both pre- and postsynaptic regulation
of rat soleus muscle contractility, and these processes are significantly more pronounced at low
temperatures. Muscle Nerve 55: 417–423, 2017.
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