Journal of Physics: Conference Series 2017 vol.789 N1

Plasma technologies application for building materials surface modification

Luchkin A., Hakki A., Rahimov N., Sadikov K., Luchkin G. Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

© Published under licence by IOP Publishing Ltd. Low-temperature plasma modification of LiYF 4 crystal surface in Helium atmosphere caused microhardness decreasing and increasing of roughness of crystal surface. The change of microhardness and morphology is a possible result of Fluorine outgoing from material structure due to heating of surface and plasma chemical reactions and ingoing of Oxygen. As a result of exchange and diffusion processes crystal surface structure become more crumbly, its morphology and mechanical properties change.

http://dx.doi.org/10.1088/1742-6596/789/1/012074

References

- Volokitin G.G., Skripnikova N.K., Volokitin O.G., Shehovtzov V.V. and Kashapov N.F. 2016 Plasma technologies application for building materials surface modification J. Phys:. Conf. Ser. 669 012065
- [2] Galyautdinov R.T., Luchkin A.G. and Luchkin G.S. 2013 Low-temperature plasma in processes of deposition of functional coatings. collection of articles IV Republican scientific-technical conference: collection of articles Kazan : KSTU Publishing house 155-161 rus
- [3] Galyautdinov R.T., Kashapov N.F. and Luchkin G. S. 2005 Applied physics 88-93
- [4] Luchkin A.G. and Kashapov N.F. 2014 Reactive magnetron sputtering model at making Ti-TiOx coatings J. Phys. Conf. Ser. 567 012027
- [5] Okatov M.A. 2004 Spravochnik optika tehnologa 2 (Polytehnika: SPb.) 679
- [6] Semashko V.V. et al 2016 Laser performance of in-band pumped Er : LiYF4 and Er : LiLuF4 crystals Quantum Electronics 46 95-99