Bioresource Technology 238 (2017) 205-213

Contents lists available at ScienceDirect

Bioresource Technology

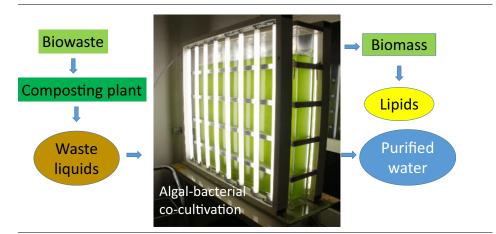
journal homepage: www.elsevier.com/locate/biortech

Culturing of *Selenastrum* on diluted composting fluids; conversion of waste to valuable algal biomass in presence of bacteria

Tossavainen Marika ^{a,*}, Nykänen Anne ^a, Valkonen Kalle ^{a,1}, Ojala Anne ^{a,b}, Kostia Silja ^c, Romantschuk Martin ^{a,d}

^a Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland

^b Department of Forest Sciences, P.O. Box 27, 00014 University of Helsinki, Finland


^c Faculty of Technology, Lahti University of Applied Sciences, Ståhlberginkatu 10, 15110 Lahti, Finland

^d Institute of Environmental Sciences, Kazan Federal University, 420008 Kazan, Russia

HIGHLIGHTS

G R A P H I C A L A B S T R A C T

- Composting leachates supported growth of both algae and bacteria in co-cultures.
- Nutrients from composting leachates were efficiently converted to algal biomass.
- Prolonged cultivation time and CO₂ feed enhance the lipid production in co-cultures.
- In commercialization, co-culturing is a realistic alternative.

ARTICLE INFO

Article history: Received 6 February 2017 Received in revised form 4 April 2017 Accepted 5 April 2017 Available online 7 April 2017

Keywords: Microalgae Wastewater Fatty acid Co-culture Nutrient reduction

ABSTRACT

Growth and fatty acid production of microalga *Selenastrum* sp. with associated bacteria was studied in lab-scale experiments in three composting leachate liquids. Nutrient reduction in cultures was measured at different initial substrate strengths. A small, pilot-scale photobioreactor (PBR) was used to verify lab-scale results. Similar growth conditions supported growth of both *Selenastrum* and bacteria. CO₂ feed enhanced the production of biomass and lipids in PBR (2.4 g L⁻¹ and 17% DW) compared to lab-scale (0.1–1.6 g L⁻¹ and 4.0–6.5% DW) experiments. Also prolonged cultivation time increased lipid content in PBR. At both scales, NH₄-N with an initial concentration of ca. 40 mg L⁻¹ was completely removed from the biowaste leachate. In lab-scale, maximal COD reduction was over 2000 mg L⁻¹, indicating mixo-trophic growth of *Selenastrum*. Co-cultures are efficient in composting leachate liquid treatment, and conversion of waste to biomass is a promising approach to improve the bioeconomy of composting plants. © 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

* Corresponding author.

E-mail address: marika.tossavainen@helsinki.fi (M. Tossavainen). ¹ Present address: Kyro Distillery Company, Rye Rye Oy, Oltermannintie 6, 61500 Isokyrö, Finland.

http://dx.doi.org/10.1016/j.biortech.2017.04.013

0960-8524/© 2017 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Microalgae are promising as beneficial organisms in production of renewable energy or valuable metabolites such as fatty acids