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Abstract

The branching ratios of the �� ! h�h+h��� and �� ! h�h+h��1�0�� decays, where h is
either a charged � or K meson, are measured using a data sample of 87861 �+�� pairs collected
with the OPAL detector at LEP. The two branching ratios are extracted simultaneously from

a sample of three charged particle decays and found to be:

B(�� ! h�h+h���) = (9:87 � 0:10 � 0:24)%

B(�� ! h�h+h��1�0�� ) = (5:09 � 0:10 � 0:23)%

where the �rst error is statistical and the second systematic. The branching ratio of the �

lepton into three charged particles is measured to be:

B(�� ! 3-prong) = (14:96 � 0:09 � 0:22)%

To be submitted to Zeitschrift f�ur Physik C - Particle and Fields
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1 Introduction

This paper presents a measurement of the branching ratios of the � lepton into

three charged particles (3-prongs) and of the semi-inclusive decays �� ! h�h+h��� and

�� ! h�h+h��1�0�� , where h
� is either a �� orK� meson. Such measurements are motivated

experimentally by remaining inconsistencies in the experimental data for the � branching ratios,

as discussed by K. Hayes in [1]. In Z0 decays, � samples can be selected with high e�ciency

and low background, thus permitting precise measurements of these 3-prong branching ratios.

Previously published measurements of the �� ! h�h+h��� branching ratio show

inconsistencies that are not yet resolved [2, 3]. Although there are no �rm theoretical

predictions for the branching ratio of � decays into three charged hadrons, it is known that

axial-vector current decays dominate. Perturbative QCD calculations of the axial-vector

component of the � hadronic width predict a branching ratio for the three-pion �nal states,

�� ! (3�)��� , of (18:0 � 0:7)% [5].1 The �� ! (3�)��� channel is known to be dominated

by the a1(1260)
� resonance. Neglecting corrections of order m2

�=m
2
� , chiral symmetry predicts

that the a1(1260)
� decays equally into ���+�� and ���0�0 �nal states [11]. Ignoring small

phase space corrections, this leads to a value for the branching ratio of �� ! ���+����
decays of (9:0 � 0:5)%, which is higher than the present �� ! h�h+h��� world average of
(8:0�0:4)% [4]. The discrepancy becomes more signi�cant when one considers the contributions
from �� ! K��+���� and �� ! K�K+���� decays [12, 13]. On the other hand, good
agreement with the perturbative QCD calculations is found for the symmetric �� ! ���0�0��
decay channel; its branching ratio can be extracted from the measured world average branching

ratio B(�� ! h��0�0�� ) = (9:0� 0:4)% [4], after subtracting the small Cabibbo-suppressed
contribution B(�� ! K��0�0�� ) = (0:05 � 0:04)% [6, 7].

The �� ! h�h+h��1�0�� branching ratio bene�ts from more accurate theoretical
predictions and has more consistent experimental results. The dominant contribution to this
channel comes from the vector current decay �� ! ���+���0�� . Assuming the Conserved
Vector Current (CVC) hypothesis, one can predict the rate of � decays to four pions from the

e+e� ! 4� annihilation cross section. Using the e+e� results of reference [14], one obtains a
value of (4:8 � 0:7)% for the �� ! ���+���0�� branching ratio [5], in agreement with other
authors' predictions [15]. Other contributions to the semi-inclusive �� ! h�h+h��1�0�� decay

come from the observed �� ! h�h+h�2�0�� channel [9] and from potential �� ! h�h+h�3�0��
decays. A limit on this last contribution can be obtained from CVC predictions for the rate

of � decays to six pions [5]. The sum of these theoretical predictions and experimental results
leads to a value for the �� ! h�h+h��1�0�� branching ratio which is in agreement with the

present world average value of B(�� ! h�h+h��1�0��) = (5:4� 0:4)% [4].

In this analysis, the �� ! h�h+h��� and �� ! h�h+h��1�0�� branching ratios are
measured using a data sample of 87861 �+�� pairs collected with the OPAL detector at

1In this calculation, the �
�

! (1�)��� contribution to the axial-vector hadronic width is

estimated on the basis of the inclusive world average B(�� ! h
�

�� ) = (12:18 � 0:33)% [2, 4]

after subtracting B(�� ! K
�

�� ) = (0:65 � 0:06)% [4, 6, 7]. The �
�

! (5�)��� contribution is

the sum of B(�� ! 3h�2h+�� ) = (0:071� 0:007)% [4, 8], B(�� ! h
�

h
+
h
�2�0�� ) = (0:52� 0:05)% [9] and

B(�� ! h
�4�0�� ) = (0:16� 0:07)% [10]. The �

�

! e
���e�� branching ratio used for normalization is

(17:9� 0:17)% [4].
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LEP between 1991 and 1994. These two semi-inclusive modes sum up to give all of the �

decays into 3-prongs and each is the main background in the determination of the other. Their

branching ratios are extracted simultaneously from a sample of three charged track � decays.

The discrimination between decays with only charged hadrons and decays accompanied by one

or more neutral pions is given by the ratio of the total energy deposited in the electromagnetic

calorimeter to the sum of the track momenta. From the total three charged track sample,

a measurement of the branching ratio of � decays into 3-prongs is obtained. Using an

event topology analysis, OPAL has previously measured the 3-prong branching ratio to be

(15:26 � 0:26 � 0:22)% [16], which is signi�cantly higher than the average branching ratio of

other published results of (13:98 � 0:24)%.2 The result of this analysis is in agreement with

and supersedes the previous OPAL measurement.

This paper is divided into the following parts: section 2 contains a brief description of the

parts of the OPAL detector relevant to this analysis; section 3 describes the Monte Carlo used

to simulate � decays; section 4 outlines the selection of e+e� ! �+�� and 3-prong � decays and

introduces the formalism used in calculating the �� ! h�h+h��� and �� ! h�h+h��1�0��
branching ratios; section 5 describes the corrections applied to the Monte Carlo predictions in

order to obtain the �nal results; section 6 gives the details of the systematic error studies;
and section 7 summarizes the results for the �� ! h�h+h��� , �� ! h�h+h��1�0�� and
�� ! 3-prong branching ratios and compares them to the present world averages.

2 The OPAL detector

A detailed description of the OPAL detector can be found elsewhere [17]. Only the

characteristics of the subdetectors relevant to this analysis are given here. The OPAL coordinate
system is de�ned with the origin at the nominal interaction point, the positive z axis along the
e� beam direction, the positive x axis in the beam plane pointing towards the center of the
LEP ring and the positive y axis along the normal to the beam plane. The polar and azimuthal
angles are called � and �, respectively.

The momentum and direction of charged particles are measured by a central tracking

detector that contains three drift chambers: a vertex chamber, a large volume jet chamber
with 159 layers of axial anode wires, and an outer chamber which provides a precise

measurement of the z-coordinate. The three chambers are contained in a four bar pressure

vessel and situated in a 0.435 T axial magnetic �eld. Combined, they provide a measurement
of the particle momentum transverse to the beam direction, pt, with a resolution of

(�pt=pt) =
q
(0:02)2 + (0:0015pt)2 (pt in GeV/c) for j cos �j < 0:73. The jet chamber also

provides a measurement of the energy loss of charged particles, dE/dx, with a resolution of

approximately 3.5% for tracks in multihadronic events with the maximum number of hits
used in the dE/dx calculation. Inside the vertex chamber is a small-radius silicon microvertex

detector. Between 1992 and 1993, this detector was upgraded from one-coordinate to two-

2This value is obtained after subtracting the OPAL result from the world average branching ratio of

reference [4] and includes a scale factor of S = 1.2. The averages of branching ratios used in this paper

are calculated following the Particle Data Group unconstrained averaging procedure.
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coordinate readout, thus allowing both r� and z position measurements for charged tracks at

radii of 61 and 75 mm [18].

Electromagnetic energy is measured by a lead glass electromagnetic calorimeter located

outside the magnet coil, behind an average of two radiation lengths of material. Due to this

upstream material, the intrinsic energy resolution of �E/E = 5-6 %/
p
E (E in GeV) is degraded

by about a factor of two. In front of the lead glass calorimeter there is an array of 160

scintillators which acts as a time-of-ight counter, and a presampler detector which measures

the position and multiplicity of particles entering the electromagnetic calorimeter. Further out

in radius are a hadronic calorimeter of limited streamer tubes enclosed in the magnet return

yoke, and a muon chamber system. The calorimetric detectors and muon chambers are divided

into a cylindrical barrel region and two endcaps. A multi-element forward detector located in

the small polar angle regions around the beam pipe measures the luminosity and completes the

acceptance.

3 Monte Carlo simulation

A Monte Carlo simulation of the process e+e� ! �+�� and of the subsequent � decays
is used to evaluate the e�ciencies of the selection criteria described in sections 4 and 5. The

e+e� ! �+�� events were generated using the KORALZ 4:0 Monte Carlo [19]. The dynamics of
the � decays were simulated with the TAUOLA 2:4 decay library [20]. Bremsstrahlung photons
from �rst order QED corrections to the � decay modes are included when calculating the
e�ciencies of each channel. The Monte Carlo branching ratios for the channels not measured
in this analysis were set equal to the values shown in Table 1.

A dedicated Monte Carlo sample was used to simulate the �� ! ���+���0�� �nal state.

It implements a new parametrization of the hadronic matrix elements for the � decay into four
pseudoscalars [22]. Resonances with s-dependent coupling constants are added to the structure
of the hadronic current. The coupling constants are tuned to obtain good agreement between
the model and the experimental values of the e+e� ! 4� cross-section in the center-of-mass
energy range covered by the tau decay products (

p
s = 1:0 � 2:0 GeV). This parametrization

was found to give a better description of the total track momentum and electromagnetic cluster
energy distributions observed in the three charged track sample than the simpler model used

in TAUOLA 2.4.

The Monte Carlo events were passed through the GEANT simulation [23] of the OPAL
detector including a detailed simulation of the two-coordinate readout silicon microvertex
detector [24]. The 1991-1992 data sample was collected with the one-coordinate readout silicon

microvertex detector, which contains a di�erent amount of material. Di�erences between the

two versions of the silicon detector were checked with the data. We found that the fractions
of conversion candidates in the silicon region in the 1991-1992 and the 1993-1994 data samples

are consistent.
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4 Event selection

The analysis is based on the data collected using the OPAL detector from 1991 through

1994 3 for a total integrated luminosity of 128 pb�1. About 80% of the integrated luminosity

was recorded at the Z0 peak, the remainder being taken at energy points within �3 GeV of

the peak. Only data for which the tracking chambers and the electromagnetic calorimeter were

fully operational are used.

4.1 Preselection of e+e� ! �
+
�
� events

The preselection of e+e� ! �+�� candidate events [25, 26] is based on the very distinct

signature of �+�� pairs produced at the Z0 energy: two nearly back-to-back jets with typically

one to three charged particles and some missing energy due to the undetected neutrinos. Often

in the event there are clusters in the electromagnetic calorimeter originating from neutral
hadrons or photons which are not associated with any charged track. A jet is de�ned by

assigning the charged tracks and the clusters in the electromagnetic calorimeter to cones of 35�

half-angle [27]. A candidate tau pair event must have exactly two jets, each containing at least
one charged track. The tracks and clusters considered in the jet de�nition must pass quality
requirements. A track is accepted if it has a transverse momentum pt > 100 MeV/c, an impact
parameter in the plane perpendicular to the beam direction d0 < 2 cm, a distance from the

beam spot along the beam direction z0 < 75 cm, and at least 20 measured points in the jet
chamber with a maximum radius of 75 cm for the �rst wire hit. A cluster is accepted if it has
an energy of at least 100 MeV in the barrel or 200 MeV in the endcap. Clusters in the endcap
are also required to extend over a minimum of two lead glass blocks, each of them contributing
less than 99% of the total cluster energy.

The multihadronic background is reduced by allowing a maximum of 6 charged tracks and
10 electromagnetic clusters in the event. The background from two-photon e+e� ! (e+e�)X

processes, where the �nal state e+e� escapes undetected at low angles and the system X

is misidenti�ed as a low visible energy � pair event, is reduced by rejecting events with an
acollinearity between the two charged jets greater than 15�. Further rejection is obtained by
requiring that the total visible energy in the event, given by the sum over the two cones of the

larger of either the scalar sum of track momenta or the summed cluster energy in each cone,

exceeds 3% of the center-of-mass energy Ecm. Finally if the total visible energy is less than
20% of the center-of-mass energy, the event is rejected if the total transverse momentum of the

charged tracks and transverse energy of the clusters in the event are both less than 2 GeV.
Minor sources of backgrounds from cosmic rays and beam-gas interactions are suppressed with

simple requirements on the location of the primary event vertex and on the time-of-ight signals
associated with the tracks.

Decays of the Z0 into charged leptons other than �+�� can be identi�ed by the presence of

two very high momenta, back-to-back charged particles with the full beam energy deposited in

3About 6% of the 1994 data were collected after the silicon microvertex detector had been removed and are

not considered in this analysis.
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the electromagnetic calorimeter for e+e� ! e+e� and with very little electromagnetic energy

for e+e� ! �+��. The e+e� ! e+e� events are identi�ed and rejected if either Ecls > 0:7Ecm

or Ecls + 0:3ptrk > Ecm, where Ecls is the total energy deposited in the lead glass calorimeter

and ptrk is the total scalar momentum of the charged tracks. Muon pair events are identi�ed

by the combined use of the electromagnetic and hadronic calorimeters, and outer muon

chambers [25, 26]. An event is classi�ed and rejected as a muon pair if it contains at least

two candidate muon tracks and if the scalar sum of the cluster energies plus the energy of the

highest momentum track of both cones is greater than 60% of the center-of-mass energy.

After this preselection, a total of 87861 �+�� candidate events are found in the barrel

region of OPAL, de�ned by an average value of j cos �j < 0:68 for the two jets. The residual

non-� contamination in the �+�� sample, given by the sum of e+e� ! e+e�, e+e� ! �+��,

e+e� ! q�q and two-photon e+e� ! (e+e�)X events, was estimated from Monte Carlo studies

and data control samples to be fnon��Bkgd = (1:83 � 0:30)% [26].

4.2 Selection of 3-prong � decays

A signi�cant component of background coming from 1-prong and 5-prong � decays can be
rejected simply by requiring that the preselected cones contain a number of charged tracks
Ntrk = 3. Poorly reconstructed cones can be further rejected, with minimal e�ciency losses,
by requiring that the sum of the charges of the three tracks is equal to �1. Monte Carlo
studies indicate that the sample still has a considerable contamination from 1-prong � decays

containing an e+e� pair either from photon conversions (20:07 � 0:17%) or from Dalitz decays
of a �0 (2:61 � 0:07%), and from 1-prong �� ! h�K0

S�0�0�� decays with a K0
S ! �+��

vertex close to the production point (1:30 � 0:05%).4 Minor sources of background come from
1-prong decays with two extra �=K tracks from nuclear interactions in the detector material
and 5-prongs with two unreconstructed tracks.

Cones containing an e+e� pair from a photon converting in the detector material or from
a Dalitz decay of a �0 are identi�ed and rejected on the basis of a topological conversion
�nder.5 This �nder looks for a conversion vertex de�ned as the point in the r� plane where
the tangents of two opposite sign tracks are parallel. The dE/dx of both tracks is required
to be between 9.0 and 12 keV/cm, which is the typical energy loss of an electron. To reject

accidental combinations of parallel tracks which do not come from a conversion vertex, the

distance between the two tracks in the r� plane at the conversion point is required to be less
than 3 mm, the angular separation between the vector from the primary interaction point to

the conversion point and the vector sum of the momenta of the candidate conversion tracks
must be less than 5�, and the radius of the �rst hit in the jet chamber for both tracks must be

no more than 20 cm before the conversion vertex.

To increase the selection e�ciency for  ! e+e� conversions and for �0 ! e+e� decays,
a conversion �nder entirely based on dE/dx is also applied, thus exploiting the good particle

4Throughout the paper, the errors on Monte Carlo predictions are the Monte Carlo statistical errors, unless

otherwise speci�ed.
5In the following, e+e� pair production from a photon converting in the detector material or a Dalitz decay

of a �
0 will be generically indicated as conversions, unless otherwise speci�ed.
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identi�cation provided by the ionization energy loss for low momentum tracks. Two oppositely

charged tracks in a cone are identi�ed as an e+e� pair if both tracks have a momentum and

an energy loss such that (8:0 + 0:3p) <dE/dx< 12:0, where p is measured in units of GeV/c

and dE/dx is measured in units of keV/cm. The Monte Carlo predicts that the combination

of the topological and dE/dx-based �nders identi�es (94:33 � 0:23)% of the Ntrk = 3 cones

containing a  ! e+e� vertex and (77:94�1:11)% of the cones containing a �0 ! e+e� vertex.

The larger ine�ciency for the latter background arises from an inadequate modelling of the

dynamics of Dalitz decays in the Monte Carlo, as discussed in section 5.2. Of the conversion

candidates, (84:82 � 0:33)% come from  ! e+e� vertices, (9:12 � 0:26)% from �0 ! e+e�

vertices and (6:06� 0:22)% from fake conversions. The loss of e�ciency of real 3-prong events

is (1:43 � 0:05)%.

The 1-prong �� ! h�K0
S�0�0�� decays, in which K0

S ! �+��, are identi�ed by the

presence of a neutral secondary vertex in the cone. The neutral vertex is de�ned as the

intersection of a pair of oppositely charged tracks in the plane perpendicular to the beam

direction. To reduce the combinatorial background, quality cuts are imposed on the tracks

and on the radius of the secondary vertex. In particular the requirement that the impact

parameter of both tracks be further than 3 mm from the average beam spot eliminates most of
the combinatorial background [28]. The invariant mass of the two tracks, assuming them both
to be pions, is required to be between 400 and 600 MeV/c2, consistent with the K0

S mass. A
sample containing (41:3� 1:9)% of the cones with a K0

S ! �+�� vertex and having a purity of
(78:3�2:2)%, according to the Monte Carlo, is selected with these criteria, after the conversion

rejection has been applied. In the data, 259 cones are identi�ed as containing a K0
S ! �+��

vertex, compared with 193 � 10 in the Monte Carlo. The disagreement is consistent with the
large uncertainty in the �� ! h�K0

S�0�0�� branching ratio and has been taken into account
in the evaluation of the �nal systematic error.

After the 3-prong selection, the background from � sources other than 3-prong decays has
been reduced to (3:72 � 0:09)%, according to the Monte Carlo. The di�erent components of

this residual contamination are summarized in table 2. The only expected non-� background
in the 3-prong sample comes from low multiplicity multihadronic jets. This contribution
has been evaluated using a sample of 2.4 million e+e� ! q�q events, generated with the
JETSET 7.3 Monte Carlo [29] and passed through the OPAL full detector simulation [24].
The residual multihadronic contamination after the complete event selection is then estimated

to be (0:79 � 0:04)%. The contributions to the background from other non-� sources such
as two-photon events, e+e� ! e+e�() or e+e� ! �+��() events with a converting photon,

and e+e� ! `+`� V events, with a pair of oppositely charged tracks that are not conversion

electrons forming the V vertex, are found to be negligible.

4.3 Discrimination between �� ! h�h+h��
�
and

�
� ! h

�

h
+
h
��1�0�

�
decays

Having selected a clean sample of 3-prong � decays, we use the distribution of the total

energy deposited in the electromagnetic calorimeter divided by the scalar sum of the momenta of
the three tracks, E/p, to discriminate between the �� ! h�h+h��� and �� ! h�h+h��1�0��
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modes. Figure 1a compares the E/p distribution of data to that of the Monte Carlo simulation

for cones passing the 3-prong selection. There is good agreement for E/p > 0:1, the �2

probability for the Monte Carlo distribution being 32%. The discrepancy for values of E/p

below 0.1 is due to the imperfect simulation of the interaction of minimum ionizing hadrons in

the electromagnetic calorimeter, as discussed in section 6.

Using a cut on the E/p distribution, one can divide the 3-prong sample into 3h-enhanced and

3h�1�0-enhanced samples. For each sample an equation can be written relating the e�ciencies

for selecting a particular channel, weighted by its branching ratio, and the number of candidates

found in the data. The �� ! h�h+h��� and �� ! h�h+h��1�0�� branching ratios, for which

the shorthand notation B3h and B3h�1�0 is used, can then be calculated by solving the system

of equations:

�
(1)
3hB3h + �

(1)
3h�1�0B3h�1�0 + �

(1)
Bkgd � (1 �B3h �B3h�1�0) =

N1 (1� fnon��1 )

N� (1 � fnon��Bkgd )
(1)

�
(2)
3hB3h + �

(2)
3h�1�0B3h�1�0 + �

(2)
Bkgd � (1 �B3h �B3h�1�0) =

N2 (1� fnon��2 )

N� (1 � fnon��Bkgd )
(2)

where the index (1) indicates the 3h-enhanced sample and the index (2) indicates the

3h�1�0-enhanced sample. The �
(i)
3h and �

(i)

3h�1�0 terms are the Monte Carlo e�ciencies for the
�� ! h�h+h��� and �� ! h�h+h��1�0�� channels, calculated as explained in the following

section. The �
(i)
Bkgd are the Monte Carlo e�ciencies of any residual non-3-prong � decay, weighted

by a term that constrains the sum of all � branching ratios to be equal to 100%. The Ni are
the number of 3-prong cones selected in the data and fnon��i are the fractions of background
events from sources other than � decays in each E/p sample. Finally, N� is the total number
of preselected cones in the data and fnon��Bkgd is the non-� background fraction in the preselected

sample.

Solving the system of equations above for di�erent values of the cut in the E/p distribution,
we �nd that B3h varies as shown in Figure 1b. The solution for B3h�1�0 is constrained by the
requirement that the two be equal to the measured �� ! 3-prong branching ratio. There is
good stability for a large range of E/p. The high branching ratio for the �rst point reects

the discrepancy between Monte Carlo and data for low E/p values. The minimum statistical
error is found for a cut on E/p at 0.6 which is chosen as the point of maximum discrimination
between the two channels. The B3h and B3h�1�0 solutions found for this cut are in agreement
with the values found from a �2-minimization of the E/p Monte Carlo distributions for the two

decay modes with respect to the data distribution.

5 E�ciency calculation

The �� ! h�h+h��� and �� ! h�h+h��1�0�� decays, although dominated by the
�� ! ���+���� and �� ! ���+���0�� modes, have signi�cant contributions from other

3-prong �nal states. Modes containing one or two kaons in the �nal state have been

observed by the DELCO and TPC Collaborations [12, 13]. From the average of their results
we expect a branching ratio of (0:41 � 0:18)% (S=1.8) for the �� ! K��+���� channel
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and (0:17 � 0:07)% (S=1.0) for the �� ! K�K+���� channel. The �� ! h�h+h�2�0��
�nal state has been observed by CLEO [9]. Using their result for the ratio of

B(�� ! h�h+h�2�0�� )=B(�
� ! 3-prong) and the � into 3-prongs branching fraction measured

by OPAL [16], a branching ratio of (0:52�0:05)% is derived for the �� ! h�h+h�2�0�� channel.

A limit on potential contributions from �� ! h�h+h�3�0�� decays of (0:15�0:05)% is obtained

from the CVC predicted rate of � into six pions [5], after subtracting the �� ! 3h�2h+�0��
contribution of Table 1.

In this analysis no attempt has been made to distinguish between pion and kaon tracks. Also

the granularity of the OPAL electromagnetic calorimeter is not su�cient to distinguish in an

unambiguous way decays with one or more �0 on an event-by-event basis. Monte Carlo studies

indicate that the e�ciency of the 3-prong selection for �� ! K��+���� , �
� ! K�K+����

and �� ! h�h+h��2�0�� modes is signi�cantly di�erent from the e�ciency of the dominant

decays, as shown in Table 3. To account for this, assumptions have been made about the relative

contribution of the non-dominant channels to the �� ! h�h+h��� and �� ! h�h+h��1�0��
�nal states based on the experimental measurements and phenomenological predictions above.

Under the hypothesis that the �� ! h�h+h��� and �� ! h�h+h��1�0�� channels consist

only of the �� ! ���+���� and �� ! ���+���0�� decays, the solutions of the system
of equations 1 and 2 are B3h = 9:65% and B3h�1�0 = 5:26%. Based on these approximate
branching ratios, a �� ! K��+���� relative contribution of (4�2)% and a �� ! K�K+����
relative contribution of (2� 1)% to the three charged �nal state are allowed. For the multiple
�0 �nal state, a (10 � 1)% relative contribution from �� ! h�h+h�2�0�� decays is assumed.

The �nal �� ! h�h+h��� and �� ! h�h+h��1�0�� e�ciencies of Table 3 are then calculated
as the weighted sums of the Monte Carlo e�ciencies of all the above decays. The uncertainties
on the di�erent relative contributions are used in the evaluation of the systematic error. A
separate systematic uncertainty is calculated by allowing a 3% relative contribution from the
�� ! h�h+h�3�0�� mode to the multiple �0 �nal state. Since in this analysis no explicit �0

reconstruction is attempted, the �nal results might be sensitive to the presence of other neutral
mesons, like the �, whose decays include photons or �0's. However, there is no experimental
evidence for such �nal states in 3-prong � decays and their branching ratios are expected to be
small [30].

Also entering the system of equations in B3h and B3h�1�0 are the background selection

e�ciencies, �
(i)
Bkgd. They are given by the sum of the Monte Carlo e�ciencies of all � channels

that do not contribute to the 3-prong �nal state, weighted by the branching ratios of Table 1.

5.1 Signal e�ciency correction

Of the 3-prong selection criteria, the requirement Ntrk=3 causes the largest e�ciency losses
for signal channels, rejecting more than 13% of �� ! h�h+h��� decays and more than 20% of
�� ! h�h+h��1�0�� decays. Decays with 3-prongs are lost to the Ntrk= 2 class because of

track merging e�ects. Migration to topologies with Ntrk>3 is due to track splitting e�ects or to
the presence of a conversion. Table 4 gives the e�ciencies of each category for �� ! h�h+h���
and �� ! h�h+h��1�0�� decays, as calculated from the Monte Carlo. These values were

checked with control samples in the Ntrk = 2 and Ntrk>3 topologies, as explained below.
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Two problems are found to a�ect the number of reconstructed tracks in a cone: an unresolved

left-right ambiguity in assigning hits to high momentum tracks which pass very close to the

jet chamber anode plane, and an imperfect modelling in the Monte Carlo of the jet chamber

double hit resolution. The left-right ambiguity causes spurious tracks with typically fewer

than 60 wire hits to be reconstructed within 0:5� of the anode plane. This problem a�ects

the relative number of 3-prong decays reconstructed in the Ntrk = 3 and Ntrk = 4 topologies

and is considered in the calculation of the �nal systematic error of section 6. The double hit

resolution is a measure of the probability with which the track reconstruction algorithm can

resolve two nearby hits in the tracking chamber. In the data, this probability starts rising

sharply at a hit separation of 1:5 mm and reaches 100% for distances around 4 mm. In the

Monte Carlo, the same probability is reached only at 0.5-1.0 mm larger hit separations. This

imperfect modelling of the double hit resolution a�ects the fraction of 3-prong events which

are assigned to the Ntrk= 2 class. Since one of the preselection cuts for good charged tracks

requires that the innermost wire hit is within 75 cm of the beam axis, two close tracks in the

Ntrk=3 sample which start having separate hits in the data at a radius around 75 cm have a

lower probability to be resolved in the Monte Carlo and preferentially populate the Ntrk = 2

class. In support of this interpretation we observe that the Monte Carlo minimum azimuthal

separation between any two tracks in Ntrk= 3 cones has a de�cit with respect to the data in
the low angle region.

To assign a correction to the �� ! h�h+h��� and �� ! h�h+h��1�0�� e�ciencies due to
this imperfect modelling of the double hit resolution, one has to identify cones in the Ntrk=2

class coming from 3-prong decays with two close unresolved tracks. Natural candidates are
events for which one of the two tracks has an ionization energy loss of twice that of an isolated
track. The energy loss of a charged particle of momentum p > 100 MeV/c is typically between
6 and 12 keV/cm. Therefore, we can select 2-prong cones with two close unresolved tracks by
requiring that the dE/dx of either track is larger than 12 keV/cm. Monte Carlo studies indicate

that the purity of real 3-prong � decays in this sample can be increased to 95% by requiring
that both tracks have an associated hit in the silicon microvertex detector, thus suppressing
the background from 1-prong decays with a partially reconstructed conversion. There is a clear
excess of events in the Monte Carlo sample relative to the data, indicating a larger loss of 3-prong
decays to the Ntrk=2 class. The corresponding corrections to �

(i)
3h and �

(i)

3h�1�0 are 1:017� 0:006

and 1:014 � 0:006, respectively. The error on the correction takes into account the statistical
precision of the Ntrk = 2 sample and small discrepancies between data and Monte Carlo for
the variables used in selecting this sample. The �� ! h�h+h��� and �� ! h�h+h��1�0��
e�ciencies of Table 3 are corrected by these factors before being used in the calculation of the

�nal branching ratios.

The fraction of 3-prong � decays lost to the Ntrk> 3 class due to  conversions or Dalitz

decays has been checked with a sample of Ntrk = 5 cones with exactly two tracks identi�ed

as coming from a conversion. The conversion identi�cation uses a combination of geometrical
and energy loss requirements similar to the one used in selecting  ! e+e� and �0 ! e+e�

decays in three charged-track cones. The Ntrk = 5 sample is approximately 86% pure in

�� ! h�h+h��1�0�� decays, according to the Monte Carlo. The �nder selects 544 cones
in the data compared to 545 � 29 in the Monte Carlo. The error is given by the combination

of the Monte Carlo statistical error and the uncertainty in the �nal number of conversions
discussed at the end of section 5.2. Given the good agreement, no corrections are applied to

the �� ! h�h+h��� and �
� ! h�h+h��1�0�� e�ciencies for losses to topologies with Ntrk>3.
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5.2 Background e�ciency correction

The most e�ective cut against 1-prong decays in the Ntrk = 3 sample is given by the

combination of the topological and dE/dx-based conversion �nders introduced in section 4.2.

The number of cones containing an identi�ed conversion, Nconv, can be written as:

Nconv = Ne+e��conv+Nfake (3)

where Ne+e� is the total number of cones with a conversion vertex, �conv is the conversion

�nder e�ciency, and Nfake is the number of misidenti�ed conversions. Even after the conversion

rejection, 1-prong decays with an e+e� pair originating either from a  conversion or from a �0

Dalitz decay represent the main residual background to the 3-prong sample. This conversion

background, which can be written as NBkgd
conv = Ne+e� � (1 � �conv), is a�ected by discrepancies

in the Monte Carlo simulation either of the number of cones with a conversion vertex or the

e�ciency of detecting conversions. Detailed studies have been performed in order to check the

�nal conversion contamination in the selected 3-prong decay sample.

The fraction of fake conversions, Nfake/Nconv, is predicted by the Monte Carlo to be around
6:1%, as seen in section 4.2. Most of the misidenti�ed cones come from real 3-prong decays
and their contribution has been checked by looking at the invariant mass distribution of the
two tracks forming the conversion vertex, assuming that the particles are electrons. There is a
(21�9)% excess relative to the data in the Monte Carlo invariant mass region above 0.4 GeV/c2,
where one expects to �nd most of the real 3-prong decays according to the Monte Carlo. Since

the total fraction of 3-prongs misidenti�ed as 1-prong decays with a conversion is predicted to
be only 1.7% of the selected 3-prong decay candidates, the e�ect of this correction on �

(i)
3h and

�
(i)

3h�1�0 is small and is included as a systematic uncertainty on the �nal �� ! h�h+h��� and
�� ! h�h+h��1�0�� branching ratios.

The Monte Carlo e�ciency of the  ! e+e� selection has been checked with the data using
an enhanced sample of decays with a photon conversion. This sample was selected by requiring

that only one of the three tracks have an associated hit in the silicon microvertex detector
and that the remaining two tracks have an invariant mass, assuming the electron mass for
both, less than 0:2 GeV/c2. The purity of this sample is estimated from the Monte Carlo to
be (96:9 � 0:4)%, after correcting for inconsistencies between data and Monte Carlo in the

association of silicon hits to the tracks and in the invariant mass distribution of 3-prong �

decays. Upon applying the normal conversion selection to this enhanced photon conversion

sample, (87:78 � 0:53)% of the cones are identi�ed in the data compared with (91:69� 0:64)%

in the Monte Carlo. A correction factor of 0:957�0:009 is therefore applied to the Monte Carlo
e�ciency for selecting  ! e+e� vertices. Half of this correction is explained by an imperfect

parametrization of the energy loss for electrons, as observed in an enhanced �� ! e���e��
sample [26].

The Monte Carlo e�ciency for �0 ! e+e� decays has been found to be a�ected by the

inadequate modelling of the dynamics of �0 Dalitz decays in GEANT 3.15 [23]. While the

branching ratio is correctly set to 1:198% [4], the �0 ! e+e� decay is incorrectly treated as
a three-body decay with sharing of momenta among the e+, e�, and the  determined solely

by phase space. The momentum spectrum of the electron and positron and their opening

13



angle, which are crucial quantities in the identi�cation of e+e� pairs, are both a�ected by this

approximate modelling, as con�rmed by comparing the data and the Monte Carlo simulation

for a sample enriched in �0 ! e+e� decays. The sample was selected by requiring that all

three tracks in the cone have at least one associated silicon microvertex hit, that at least two

of the tracks have a dE/dx value in the range from 9 to 12 keV/cm, and that the invariant

mass of the e+e� pair is less than 0:15 GeV/c2, consistent with the �0 mass. After applying

the conversion selection to this sample, a correction factor of 1:19�0:08 is found for the Monte

Carlo Dalitz conversion e�ciency. The error on the correction comes from the sample statistics

and from uncertainties in the amount of background from non-Dalitz decays.

Table 5 summarizes the corrections found for the  ! e+e� and �0 ! e+e� Monte

Carlo e�ciencies and their e�ects on the �nal conversion identi�cation e�ciency, �conv. The

corresponding corrections to �
(1)
Bkgd and �

(2)
Bkgd are equal to 1:05�0:03 and 1:18�0:10, respectively.

The di�erence reects the di�erent relative contributions of cones with a conversion vertex to

the total number of background cones in the two E/p regions. The Monte Carlo e�ciencies

for the backgrounds in Table 3 have been corrected by these factors before being used in the

calculation of the �nal branching ratios.

The number of cones with a conversion vertex, Ne+e� , is related both to the number of �0

mesons produced in � decays, since �0 !  and �0 ! e+e� decays represent the main source
of photons in � events, and to the amount of material that photons encounter in the tracking
chambers. From the accuracy with which one knows the branching ratios of the 1-prong decay
channels contributing most of the �0 mesons, namely �� ! h��0�� , �

� ! h�2�0�� , and
�� ! h� � 3�0�� , we derive a 3% uncertainty on Ne+e� . Uncertainties from 1-prong decays

with an � meson in the �nal state, which are not modelled in the Monte Carlo, are expected to
be small [30]. Possible e�ects from the modelling of bremsstrahlung photons from �rst order
QED corrections to the � decay modes have been checked by repeating the analysis ignoring
any � decay with such prompt photons. The �nal results do not show any signi�cant changes.

The simulation of the material has been studied by looking at the distribution of the
radial distance of conversion vertices from the beam spot in events identi�ed by the combined

topological and dE/dx �nders. There is good qualitative agreement between the distribution
of the conversion radii and the location of the material in front of the OPAL jet chamber. A
correction to the Monte Carlo prediction for the total Ne+e� using the data can be obtained
from equation 3. For the term on the left-hand side, one compares the number of conversion

candidates identi�ed in data, NData
conv = 6392, with the number predicted by the Monte Carlo,

NMC
conv = 6301 � 58. For the terms on the right-hand side, di�erences between data and Monte

Carlo for both Nfake and �conv have been discussed previously. Therefore, the only unknown

quantity in equation 3 is Ne+e� , for which one derives a correction factor of 1:05 � 0:02.
The changes induced on �

(1)
Bkgd and �

(2)
Bkgd by this correction are small and are included in the

calculation of the systematic uncertainties a�ecting B3h and B3h�1�0 .
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5.3 Results

The values of all the parameters entering the equations 1 and 2 for a cut in E/p at 0.6 are

shown in Table 6, where the corrections to the signal and background e�ciencies discussed in

the previous sections have been applied. The branching ratios derived from these parameters

are B3h = 9:68% and B3h�1�0 = 4:93%. However, we must also correct for the preselection

e�ciencies, which are decay-mode dependent. The main reason for this dependence is due to

the requirement of a maximum of 6 good charged tracks in the event, which rejects 3-prong �

decays where the opposite cone contains a 5-prong decay, a 3-prong � decay with a conversion,

or a � decay with more than one conversion. Monte Carlo studies indicate that the bias induced

by the preselection on the channels of interest in this analysis is F3h
Bias = 0:9805 � 0:0058 and

F3h�1�0

Bias = 0:9675 � 0:0075, where the errors are the Monte Carlo statistical errors. Track

reconstruction de�ciencies not modelled in the Monte Carlo a�ect the preselection bias factors

by much less than the uncertainties estimated above.

After dividing the �� ! h�h+h��� and �� ! h�h+h��1�0�� branching ratios calculated

from the preselected sample by the bias factors above, we obtain:

B(�� ! h�h+h��� ) = (9:87 � 0:10)%
B(�� ! h�h+h��1�0�� ) = (5:09 � 0:10)%

where the errors are statistical. The statistical correlation between the two measurements is
�0:58. The branching ratio calculated from the total 3-prong selected sample is:

B(�� ! 3-prong) = (14:96 � 0:09)%

where the error is statistical.

6 Systematic errors

The contributions to the systematic uncertainty in the determination of the �� ! h�h+h���
and �� ! h�h+h��1�0�� branching ratios are divided into three classes: contributions from

the branching ratio extraction method, from the Monte Carlo simulation of the background,
and from the calculation of the signal e�ciencies. A summary is given in Table 7.

The e�ciency terms in equations 1 and 2 have uncertainties due to the limited Monte

Carlo statistics. One standard deviation statistical errors are propagated through the full

matrix calculation. The uncertainties found for B3h and B3h�1�0 are both equal to �0:06%.
The corrections to B3h and B3h�1�0 due to the decay-mode dependence of the � preselection

e�ciency also give a systematic uncertainty on the �nal branching ratios. Changing the

preselection bias factors by one standard deviation, we obtain variations in the �� ! h�h+h���
and �� ! h�h+h��1�0�� �nal branching ratios of �0:06% and �0:04%, respectively.

Tests have been performed on the di�erent sources of background surviving the 3-prong

selection of table 2 in order to study possible systematic e�ects on the �nal branching ratios.
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The background from 1-prong events with a  ! e+e� conversion or a �0 ! e+e� decay, which

is the main contamination from � sources, has been discussed in section 5.2. A discrepancy

between data and Monte Carlo at the 5% level was found for the total number of cones with a

conversion vertex, which corresponds to a change in the �nal B3h and B3h�1�0 of �0:01% and

�0:02%, respectively. In addition, the systematic uncertainty on the conversion ine�ciency

correction induces a variation on the B3h and B3h�1�0 central values of �0:02% and �0:07%,

respectively. The sum in quadrature of these two variations is shown in Table 7 as the systematic

error due to the conversion background.

The second main source of � background in the �nal 3-prong sample is due to 1-prong

�� ! h�K0
S�0�0�� decays. After applying the K0

S ! �+�� selection, the numbers of events

rejected in data and Monte Carlo were found to di�er by (34 � 11)%, where the error takes

into account both the data and the Monte Carlo statistical errors. As a conservative estimate,

the Monte Carlo prediction for the residual background from this source has been assigned

a relative systematic error of �50%. This accounts also for potential contributions from the

�� ! h�K0 �K0�� channels which are not considered in this analysis. The changes to the

�nal �� ! h�h+h��� and �� ! h�h+h��1�0�� branching ratios are equal to �0:05% and

�0:03%, respectively. A �50% uncertainty has also been assigned to the background from
1-prong decays with a nuclear interaction, resulting in variations of �0:02% and �0:07% in the
�� ! h�h+h��� and �� ! h�h+h��1�0�� branching ratios, respectively.

The residual multihadronic contamination after the complete event selection has been
estimated by Monte Carlo studies to be (0:79 � 0:04)%. It can be reduced by a factor of �ve
simply by selecting events with only one track in the hemisphere opposite to a three-charged

track decay. The �� ! h�h+h��� and �� ! h�h+h��1�0�� branching fractions calculated
for this 3�1 topology are (9:80 � 0:12)% and (5:12 � 0:12)%, respectively. The change to
the B3h and B3h�1�0 central values is taken as an estimate of the systematic uncertainty due
to the e+e� ! q�q background. A minor source of systematic error is due to the uncertainty
on the non-� background fraction in the preselected �+�� event sample. The change to the

�nal �� ! h�h+h��� and �� ! h�h+h��1�0�� branching ratios induced by the one standard
deviation variation of the fnon��Bkgd fraction has been included in Table 7.

The Monte Carlo simulation of the distributions which a�ect the calculation of the
�� ! h�h+h��� and �� ! h�h+h��1�0�� e�ciencies has been checked in detail. De�ciencies
in the Monte Carlo modelling of the track reconstruction algorithm have been discussed in

section 5.1. Corrections of (1:7 � 0:6)% and (1:4 � 0:6)% were applied to the Monte Carlo

predicted e�ciencies of �� ! h�h+h��� and �� ! h�h+h��1�0�� decays to account for the

imperfect modelling of the Monte Carlo double hit resolution. The systematic uncertainty on
this correction results in an error of �0:06% for B3h and of �0:03% for B3h�1�0 . A second

e�ect on the determination of the �� ! h�h+h��� and �� ! h�h+h��1�0�� e�ciencies is

due to the presence in the data of a spurious fourth track close to the anode plane of the jet

chamber. Selecting Ntrk=4 cones which contain at least one track with fewer than 60 wire hits,

we �nd 159 events in data compared with 59 � 5 in the Monte Carlo. Adding these events to
the �nal 3-prong sample, we observe a change of +0:06% in B3h and +0:01% in B3h�1�0 . The

�nal contribution to the systematic error from tracking modelling shown in Table 7 is the sum
in quadrature of these two e�ects. The uncertainty of �0:11% induced on the �� ! 3-prong

branching ratio is the largest single systematic uncertainty on this quantity.
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The quality of the Monte Carlo simulation of the energy deposited in the electromagnetic

calorimeter by charged hadrons was investigated using a control sample of �� ! ���� and

�� ! K��� decays [25]. A discrepancy is observed at very low energies E/Ebeam < 0:02 due to

the imperfect modelling of the energy deposited by minimum ionizing particles. A discrepancy

consistent with this observation can be seen in Figure 2, which shows the distribution of the total

electromagnetic energy deposited by a �� ! h�h+h��� enriched sample, selected by requiring

that at least one �+�� invariant mass combination is in the region of the �(770)0 mass peak.

To estimate the inuence of this e�ect on the �nal branching ratios, a 15% gaussian smearing

was applied to Monte Carlo hadronic energy in the region of E/Ebeam < 0:16 so as to obtain

a good agreement with the data. The changes in the �nal B3h and B3h�1�0 branching ratios

found after this smearing are equal to +0:05% and �0:05%, respectively, and are included in

Table 7 as the low hadronic energy response contribution to the systematic uncertainty.

The �nal results are largely insensitive to the exact modelling of the energy resolution in the

Monte Carlo but are a�ected by uncertainties in the calibration of the lead glass calorimeter,

which can result in an overall energy scale discrepancy between data and Monte Carlo. The

Monte Carlo energy scale uncertainty for the contribution to the total deposited energy from

electromagnetic showers has been estimated to be �2% at 1 GeV, decreasing to �0.5% at 45
GeV. The Monte Carlo energy scale uncertainty for the contribution from hadronic showers
has been evaluated using the di�erence between data and Monte Carlo in the average energy
distribution of Figure 2. A 0:4% shift is observed for the region of E/Ebeam between 0.1 and
0.4. Changing the Monte Carlo hadronic and electromagnetic energy scale by these factors, we

�nd a maximum variation in the �� ! h�h+h��� and �� ! h�h+h��1�0�� branching ratios
of �0:10%.

The �nal results depend critically on the simulation of the E/p distribution. The dependence
of B3h and B3h�1�0 on the position of the E/p cut is taken as an estimate of the uncertainty in
this simulation. Figure 1c shows the deviation of the �� ! h�h+h��� branching ratio calculated
at a given E/p cut, with respect to the value obtained for E/p at 0.6. Correlations between

measurements are taken into account in calculating the error of each deviation. The r.m.s. of
the deviations calculated for a set of cuts in the range 0.4{0.8 is found to be 0:12% for both
decay modes. This range covers the region where the e�ciencies of the �� ! h�h+h��� and
�� ! h�h+h��1�0�� decay modes change the most rapidly and where a reduced sensitivity
to the discrepancy between data and Monte Carlo in the low E/p region is expected. This

discrepancy is already taken into account by the systematic error attributed to the low hadronic

energy response. The r.m.s. deviation, whose stability has been checked for di�erent sets
of cuts in the 0.4{0.8 range, is assigned as a systematic error due to the E/p modelling.
It is the largest single contribution to the systematic uncertainties of the �� ! h�h+h���
and �� ! h�h+h��1�0�� branching ratios and reects the sensitivity of the measurement to

the details of the modelling of the energy deposited by hadrons showering in the lead glass
calorimeter.

In the calculation of �
(i)
3h and �

(i)

3h�1�0, assumptions are made about the contribution of

non-dominant modes to the �� ! h�h+h��� and �� ! h�h+h��1�0�� �nal states. The

dependence of the �nal results on these assumptions has been evaluated by changing the
contribution of each mode by twice the error given in section 5. In this way one accounts for

inconsistencies between the di�erent experimental results, especially in the �� ! K��+����
channel [12, 13], and for possible biases in the determination of the �� ! h�h+h�2�0��
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branching ratio due to the assumedB(�� ! 3-prong). The resulting changes to B3h andB3h�1�0

are not very large, �0:04% and �0:05%, respectively. A larger variation, equal to +0:08%

for B3h and �0:07% for B3h�1�0 , is found when the contribution from �� ! h�h+h�3�0�� is

included in the multi-�0 �nal state. The discrepancy in the number of fake conversions found

in section 5.2 slightly a�ects the �� ! h�h+h��� and �� ! h�h+h��1�0�� e�ciencies and

contributes systematic errors of 0:03% and 0:02% to the �nal B3h and B3h�1�0 .

The sensitivity of the �nal results to the detailed Monte Carlo description of

�� ! h�h+h��1�0�� decays, in particular the �� ! ���+���0�� component, has been

studied by comparing di�erent Monte Carlo models. Using the simpler model implemented

in the default version of the TAUOLA 2.4 decay library, which does not �t the observed total

energy and momentum spectra as well as the model used in this analysis, we observe a change

of only 0:01% to the �nal B3h and B3h�1�0 . The Monte Carlo simulation of the E/p distribution

has been tested directly against the data for an enhanced �� ! h�h+h��1�0�� sample selected

by requiring that two of the tracks in Ntrk=5 cones originate from an e+e� pair. There is good

agreement in this distribution between data and Monte Carlo with 327 events found in the data

with E/p > 0:6 compared to 303 � 18 in the Monte Carlo, con�rming that we do not expect

a large dependence of the �nal results on the Monte Carlo modelling of �� ! h�h+h��1�0��
decays.

7 Conclusions

A measurement of the branching ratios �� ! h�h+h��� and �� ! h�h+h��1�0�� has
been performed using 87861 � pair candidates collected with the OPAL detector near the Z0

peak. Using an analysis based on the ratio between the total energy and the scalar sum of the
track momenta of � decays with three charged tracks, the following results were obtained:

B(�� ! h�h+h���) = (9:87 � 0:10 � 0:24)%
B(�� ! h�h+h��1�0�� ) = (5:09 � 0:10 � 0:23)%

where the �rst error is statistical and the second systematic. The statistical and systematic

correlation between the two measurements are �0:58 and �0:56, respectively. In Figure 3 these
results are compared with previously published measurements. The results of this analysis have
a precision which is almost two times better than the precision of the current world averages.

The branching ratio calculated from the selected three charged track sample is:

B(�� ! 3-prong) = (14:96 � 0:09 � 0:22)%

in agreement with, and superseding, the previous OPAL result of (15:26 � 0:26 � 0:22)% [16],
with which only about 10% of the data are in common. This measurement is signi�cantly higher
than the average of the branching ratios measured by other experiments, (13:98 � 0:24)% [4].

In this analysis the results for B(�� ! h�h+h��� ), B(�� ! h�h+h��1�0�� ) and

B(�� ! 3-prong) are all correlated. Measurements of the fraction of each semi-inclusive decay
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mode in the total 3-prong sample have smaller systematic uncertainties. The results for the

two fractions are:

B(�� ! h�h+h��� )=B(�
� ! 3-prong) = (0:660 � 0:004 � 0:014)

B(�� ! h�h+h��1�0��)=B(�
� ! 3-prong) = (0:340 � 0:004 � 0:014)

where the �rst error is statistical and the second systematic.

The �� ! h�h+h��� branching ratio measured here is inconsistent with the present world

average value of (8:0 � 0:4)% [4]. If contributions from �nal states with kaons [12, 13] are

subtracted, we derive an exclusive �� ! ���+���� branching ratio of (9:29 � 0:26 � 0:19)%,

where the �rst error is the experimental error of this measurement and the second is the

uncertainty on the �� ! K��+���� and �� ! K�K+���� branching ratios. This value is in

agreement with the QCD prediction of (9:0 � 0:5)% obtained from calculations of the axial-

vector component of the � hadronic width [5]. It also agrees with the measured branching ratio

of (8:95� 0:40)% for �� ! ���0�0�� [4, 6, 7], predicted to be the same as for �� ! ���+����
decays, neglecting corrections of order m2

�=m
2
� [11].

The result for the �� ! h�h+h��1�0�� branching ratio is in good agreement with the world
average of (5:4 � 0:4)% [4]. Upon subtraction of B(�� ! h�h+h�2�0�� ) = (0:52 � 0:05)% [9]

and ignoring potential �� ! h�h+h�3�0�� contributions, we derive a �� ! h�h+h��0��
branching ratio of (4:57 � 0:25� 0:05)%, where the �rst error is the experimental error of
this measurement and the second is the uncertainty on the �� ! h�h+h�2�0�� measurement.
This value is consistent with the CVC prediction for the three-charged pion plus one �0 �nal
state of (4:8 � 0:7)% [5].
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Decay mode Branching ratio (%) Input Monte Carlo channels

�� ! e���e�� 17.90 � 0.17 �� ! e���e��
�� ! ������� 17.44 � 0.23 �� ! �������
�� ! h��� 12.18 � 0.33 �� ! ���� , �

� ! K���
�� ! h��0�� 25.4 � 0.5 �� ! ��(���0)�� , �

� ! K��(K��0)��
�� ! h�2�0�� 9.0 � 0.4 �� ! a�1 (�

�2�0)�� , �
� ! K�2�0��

�� ! h��3�0�� 1.31 � 0.17 �� ! ��3�0��
�� ! h�K0��

(y) 1.22 � 0.20 �� ! K��(��K0)�� , �
� ! K�K0��

�� ! h�K0�1�0��
(y) 0.38 � 0.17 �� ! ��K0�0�� , �

� ! K�K0�0��
�� ! 3h�2h+��

(y) 0.071 � 0.007 �� ! 3��2�+��
�� ! 3h�2h+�0��

(y) 0.022 � 0.010 �� ! 3��2�+�0��

Table 1: Branching ratios and input Monte Carlo modes for the � decays not directly measured

in this analysis. For the modes marked with a y, the branching ratios of reference [4] are

averaged with recently published results. The B(�� ! h��� ) result from ALEPH is included in
the average after subtracting the �� ! K�(892)��� ;K

�(892)� ! K0
S�

� contribution [2]. The
�� ! h��3�0�� branching ratio is the sum of the �� ! h�3�0�� and �

� ! h�4�0�� branching
ratios [4,10]. The �� ! h�K0�� branching ratio is the sum of B(�� ! ��K0��) (estimated
as 2/3 of the �� ! K�(892)��� branching ratio [4]), and B(�� ! K�K0��) as measured by

ALEPH [21]. The �� ! h�K0�1�0�� branching ratio is the sum of B(�� ! ��K0�0�� ) and
B(�� ! K�K0�0�� ), both measured by ALEPH [21]. The �� ! h�K0 �K0�� decay mode is
not considered. The �� ! 3h�2h+�� and �� ! 3h�2h+�0�� branching ratios include recent
CLEO 5-prong measurements [8]

Source Contamination (%)

� decays:

1-prong with  ! e+e� conversion 1.43 � 0.06
1-prong with �0 ! e+e� decay 0.66 � 0.04
1-prong with K0

S ! �+�� vertex 0.97 � 0.05

1-prong with nuclear interaction 0.61 � 0.04

5-prong 0.05 � 0.01

Total � decays 3.72 � 0.09

Multihadronic decays 0.79 � 0.04

Total 4.51 � 0.10

Table 2: Background fractions from � decays and from multihadronic events after the 3-prong

selection. The errors are the Monte Carlo statistical errors
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Decay mode Monte Carlo e�ciency (%)
3-prong selection E/p < 0:6 E/p > 0:6

�� ! ���+���� 84.92 � 0.21 77.75 � 0.25 7.17 � 0.15

�� ! K��+���� 85.13 � 0.81 80.21 � 0.91 4.92 � 0.49
�� ! K�K+���� 75.62 � 2.40 72.81 � 2.49 2.81 � 0.92

�� ! h�h+h��� 84.75 � 0.21 77.75 � 0.24 7.00 � 0.15

�� ! ���+���0�� 77.58 � 0.34 32.16 � 0.38 45.42 � 0.41
�� ! ���+��2�0�� 72.71 � 1.20 10.77 � 0.84 61.94 � 1.31

�� ! ���+��3�0�� 69.86 � 5.37 4.11 � 2.32 65.75 � 5.55

�� ! h�h+h��1�0�� 77.08 � 0.33 30.02 � 0.35 47.06 � 0.39

�� ! non-3-prong 0.54 � 0.01 0.17 � 0.01 0.37 � 0.02

Table 3: Uncorrected Monte Carlo e�ciencies, relative to the number of preselected �

cones, for the 3-prong selection of exclusive channels contributing to the �� ! h�h+h���
and �� ! h�h+h��1�0�� �nal states. The �� ! h�h+h��� , �� ! h�h+h��1�0�� and
�� ! non-3-prong e�ciencies are the weighted sums of di�erent �nal states according to the
assumptions of section 5. The errors shown are the Monte Carlo statistical errors

Ntrk �3h(%) �3h�1�0(%)

1 0.48 � 0.04 0.65 � 0.08

2 11.30 � 0.18 9.95 � 0.23

3 86.68 � 0.20 79.52 � 0.32
4 1.13 � 0.06 4.33 � 0.16
5 0.41 � 0.04 5.55 � 0.18

Table 4: E�ciency for selecting �� ! h�h+h��� and �� ! h�h+h��1�0�� decays in �nal
states of di�erent charged multiplicities

Source Uncorrected Monte Correction Corrected Monte

Carlo e�ciency (%) factor e�ciency (%)

 ! e+e� 94:33 � 0:23 0:957 � 0:009 90:27 � 0:87

�0 ! e+e� 77:94 � 1:11 1:19 � 0:08 92:75 � 6:37

conversion 92:44 � 0:24 0:980 � 0:011 90:56 � 1:04

Table 5: Summary of the corrections applied to the photon conversion and Dalitz decay

identi�cation e�ciencies. The last line shows the correction for the overall conversion selection

e�ciency, that is for 3-prong decays containing either �0 ! e+e� or  ! e+e� vertices. The

errors on the uncorrected Monte Carlo e�ciencies are the Monte Carlo statistical error only.
The errors on the corrected Monte Carlo predictions also include the systematic uncertainties

on the correction factors
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E/p < 0:6 E/p > 0:6

�
(i)
3h (%) 79.07 � 0.47 7.12 � 0.04

�
(i)

3h�1�0 (%) 30.44 � 0.18 47.72 � 0.28

�
(i)
Bkgd (%) 0.18 � 0.05 0.44 � 0.04

Ni 16110 6018

fnon��i (%) 0.32 � 0.03 2.04 � 0.13

N� 175722

fnon��Bkgd (%) 1.83 � 0.30

F3h
Bias 0.9805 � 0.0058

F3h�1�0

Bias 0.9675 � 0.0075

Table 6: Parameters used in the calculation of the �nal �� ! h�h+h��� and

�� ! h�h+h��1�0�� branching ratios. The �
(i)
3h, �

(i)

3h�1�0 , and �
(i)
Bkgd for the two E/p regions are

corrected for the discrepancies discussed in sections 5.1 and 5.2. The errors are the combination
of the Monte Carlo statistical errors and the systematic uncertainties on the correction factors.

The fnon��Bkgd is estimated from Monte Carlo studies and corrected using background-enhanced
samples from the data. Its error is a combination of the statistical error of the control samples
and the systematic uncertainties on the corrections derived from these samples. The errors on

fnon��i , F3h
Bias and F3h�1�0

Bias are statistical only

Source �B3h (%) �B3h�1�0 (%) �B3 (%)

Monte Carlo statistics 0:06 0:06 0:03

Preselection bias factor 0:06 0:04 0:10

Conversion background 0:02 0:07 0:05
�� ! h�K0

S�0�0�� background 0:05 0:03 0:08
1-prong with nuclear interaction background 0:02 0:07 0:05

3-prong non-� background 0:07 0:03 0:04
fnon��Bkgd background 0:03 0:02 0:05

Tracking modelling 0:08 0:03 0:11
Low hadronic energy response 0:05 0:05 -

Energy scale 0:10 0:10 -

E/p modelling 0:12 0:12 -

�3h and �3h�1�0 determination 0:04 0:05 0:09

�� ! h�h+h�3�0�� contribution 0:08 0:07 0:01
Fake conversion rejection 0:03 0:02 0:05

�� ! h�h+h��1�0�� spectrum modelling 0:01 0:01 0:02

Total 0:24 0:23 0:22

Table 7: Summary of the systematic uncertainties for the B3h, the B3h�1�0 , and the

�� ! 3-prong branching ratio, B3. The total systematic error is the sum in quadrature of

the di�erent contributions

25



200

400

600

800

1000

1200

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E/p

nu
m

be
r 

of
 e

ve
nt

s
OPAL(a)

data

MC 3h

MC 3h≥1π0

MC other

9.5

10

10.5

11

B
(τ

→
3h

ν τ)
 (

%
)

(b)

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E/p

∆B
(τ

→
3h

ν τ)
 (

%
)

(c)

Figure 1: Plot (a) shows the E/p distribution for the selected 3-prong sample. The Monte Carlo
(histogram) is normalized to the number of preselected � cones observed in the data (points

with error bars). The open area represents �� ! h�h+h��� decays. The single hatched area
shows the distribution for �� ! h�h+h��1�0�� decays. The double hatched area shows the

background from sources other than �� ! h�h+h��� and �� ! h�h+h��1�0�� . The 3-prong

Monte Carlo branching ratios have been reweighted to agree with the ones calculated in this
analysis. The vertical dashed line indicates the location of the cut used to discriminate between

�� ! h�h+h��� and �� ! h�h+h��1�0�� decays. Plot (b) shows the �� ! h�h+h���
branching ratio for di�erent values of the E/p cut. The errors are statistical. The horizontal

dashed line shows the value of the branching ratio for a cut in E/p at 0.6. The high branching

ratio for the �rst point reects the discrepancy between Monte Carlo and data for low E/p
values due to the imperfect simulation of the interaction of minimum ionizing hadrons in

the electromagnetic calorimeter. Plot (c) shows the deviations between the �� ! h�h+h���
branching ratio calculated at a given point and the one calculated for a cut in E/p at 0.6. The

errors take into account the statistical correlations between the measurements. The shaded

band shows the �nal value of the total error of the B(�� ! h�h+h��� ) measurement presented
here
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Figure 2: Total electromagnetic energy, normalized to the beam energy, for all 3-prong selected
candidates in which at least one of the �+�� invariant mass combinations is in the region
of the �(770)0 mass peak. The Monte Carlo (histogram) is normalized to the number of

cones observed in the data (points with error bars). The open area is due to �� ! h�h+h���
decays. The single hatched area shows events coming from �� ! h�h+h��1�0�� decays.
The double hatched area shows the background from sources other than �� ! h�h+h��� and
�� ! h�h+h��1�0�� . The 3-prong Monte Carlo branching ratios have been reweighted to
agree with the ones calculated in this analysis
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Figure 3: The branching ratios for �� ! h�h+h��� and �� ! h�h+h��1�0�� decays as

measured by other experiments (open circles) compared with the results of this analysis (�lled

circles). The error bars give the sum of the statistical and systematic errors, when both are
available. The dashed vertical lines are the world average values before this analysis [4]. The
shaded areas show the error of the world averages. The measurements marked with an asterisk

are calculated using the current Particle Data Group �t value of B(� ! 3-prong) = 0.1438 [4]
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