Astronomy and Astrophysics 2016 vol.592

RT Crucis: A look into the X-ray emission of a peculiar symbiotic star

Ducci L., Doroshenko V., Suleimanov V., Nikołajuk M., Santangelo A., Ferrigno C. Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

© 2016 ESO.Symbiotic stars are a heterogeneous class of interacting binaries. Among them, RT Cru has been classified as prototype of a subclass that is characterised by hard X-ray spectra that extend past ~20 keV. We analyse ~8.6 Ms of archival INTEGRAL data collected during the period 2003-2014, ~ 140 ks of Swift/XRT data, and a Suzaku observation of 39 ks, to study the spectral X-ray emission and investigate the nature of the compact object. Based on the 2MASS photometry, we estimate the distance to the source of 1.2-2.4 kpc. The X-ray spectrum obtained with Swift/XRT, JEM-X, IBIS/ISGRI, and Suzaku data is well fitted by a cooling flow model modified by an absorber that fully covers the source and two partially covering absorbers. Assuming that the hard X-ray emission of RT Cru originates from an optically thin boundary layer around a non-magnetic white dwarf, we estimated a mass of the white dwarf of MWD \approx 1.2Mo. The mass accretion rate obtained for this source might be too high for the optically thin boundary layer scenario. Therefore we investigate other plausible scenarios to model its hard X-ray emission. We show that, alternatively, the observed X-ray spectrum can be explained with the X-ray emission from the post-shock region above the polar caps of a magnetised white dwarf with mass MWD \approx 0.9-1.1Mo.

http://dx.doi.org/10.1051/0004-6361/201628242

Keywords

Stars: individual: IGR J12349-6434, Stars: individual: RT Cru, White dwarfs, X-rays: binaries