Mathematical Notes 2016 vol.100 N3-4, pages 515-525

On idempotent τ-measurable operators affiliated to a von Neumann algebra

Bikchentaev A.

Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

© 2016, Pleiades Publishing, Ltd.Let τ be a faithful normal semifinite trace on a von Neumann algebra M, let p, $0 , be a number, and let Lp(M, <math>\tau$) be the space of operators whose pth power is integrable (with respect to τ). Let P and Q be τ -measurable idempotents, and let A \equiv P – Q. In this case, 1) if A \geq 0, then A is a projection and QA = AQ = 0; 2) if P is quasinormal, then P is a projection; 3) if Q \in M and A \in Lp(M, τ), then A2 \in Lp(M, τ). Let n be a positive integer, n > 2, and A = An \in M. In this case, 1) if A \neq 0, then the values of the nonincreasing rearrangement μ t(A) belong to the set {0} \cup [$\|An-2\|-1$, $\|A\|$] for all t > 0; 2) either μ t(A) \geq 1 for all t > 0 or there is a t0 > 0 such that μ t(A) = 0 for all t > t0. For every τ -measurable idempotent Q, there is aunique rank projection P \in M with QP = P, PQ = Q, and PM = QM. There is a unique decomposition Q = P + Z, where Z2 = 0, ZP = 0, and PZ = Z. Here, if Q \in Lp(M, τ), then P is integrable, and τ (Q) = τ (P) for p = 1. If A \in L1(M, τ) and if A = A3 and A – A2 \in M, then τ (A) \in R.

http://dx.doi.org/10.1134/S0001434616090224

Keywords

Hilbert space, idempotent, integrable operator, non-increasing rearrangement, normal trace, projection, quasinormal operator, rank projection, von Neumann algebra, τ -compact operator, τ -measurable operator