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Abstract 

A search for the Minimal Standard Model Higgs boson (H °) has been performed with data from e+e - collisions collected 
by the OPAL detector at LEE The search was made for events of the types e+e----ffe+e - ,  #+/.~- or t,~)H °, H°---,q~l and 
was based on approximately 78 pb -1 of data taken at center-of-mass energies between 88 and 95 GeV in the years 1990- 
1993. The present study, combined with previous OPAL publications, excludes the existence of a Minimal Standard Model 
Higgs boson with mass below 56.9 GeV at the 95% confidence level. 

1. Introduction 

Local gauge invariant theories of  the electroweak 
interaction introduce spontaneous symmetry break- 
ing [ 1 ] in order to allow the gauge bosons to acquire 
mass while keeping the theory renormalizable. This 
procedure predicts the existence of one or more scalar 
particles - the Higgs bosons [2]. These Higgs parti- 
cles have not yet been observed. 

The simplest such model, the Minimal Standard 
Model, has one doublet of  complex Higgs fields. It 
predicts the existence of a single scalar Higgs boson 
(H °) with an unspecified mass but well defined cou- 
plings. Consequently, the cross section for the produc- 
tion of an H ° at LEP (through the Bjorken process 
e+e---,Z°---,Z*H ° [3] ) and the H ° decay modes are 
precisely predicted as a function of the Higgs boson 
m a s s .  

The results of  earlier searches for a Higgs boson 
have been published by OPAL [4,5] and by the other 
LEP experiments [6]. The present paper makes use 
of a data sample of  about 1.9 million reconstructed 
hadronic Z ° events, which were collected by the 
OPAL experiment between 1990 and 1993. The anal- 
ysis is performed for the "neutrino channel" (Z*---,~,P 
and H°---,q~l) and the "charged lepton channel" 
(Z*---~e+e - or /z+~ - and H°--~q~l). Other chan- 
nels previously exploited, namely, Z*---,r+r - and 

I Also at TRIUME Vancouver, Canada V6T 2A3. 

H0---,qq, Z * ~ q q  and H°---,r+r - and Z * ~  and 
H°---,7"+r - have been discarded because, for heavy 
( ~  60 GeV) Higgs bosons, the number of  signal and 
background events is expected to be comparable. 

Previously published search strategies adopted by 
OPAL [4,5], were optimized for H ° with mass up to 
about 40 GeV. In order to extend the search sensitiv- 
ity to higher mass, the analysis has been reoptimized 
to exploit detector improvements, improved event re- 
construction and better understanding of the detector 
response, while the rejection of background events has 
been increased. 

2. The OPAL detector 

The OPAL detector, which is described in detail 
in [7], is a solenoidal detector with a pressurized 
central tracking system operating in a 0.435 T mag- 
netic field. The lead-glass electromagnetic calorime- 
ter together with presamplers and time-of-flight scin- 
tillators are located outside the magnet coil and pres- 
sure vessel. The magnet return yoke is instrumented 
for hadron calorimetry and is surrounded by exter- 
nal muon chambers. Forward calorimeters close to the 
beam axis measure luminosity and complete the ac- 
ceptance. The detector features of relevance to this 
analysis are described briefly below. 

A fight-handed coordinate system is adopted, where 
the x axis points to the center of  the LEP ring, and 
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positive z is along the electron beam direction. The 
angles 0 and ~b are the polar and azimuthal angles, 
respectively. 

The central tracking system consists of a silicon 
micro-vertex detector, a vertex drift chamber, a jet 
chamber and a system of chambers which measure the 
z coordinate. 

In the range Icos0l < 0.73, 159 points are mea- 
sured in the jet chamber along each track and at least 
20 points on a track are obtained over 96% of the 
full solid angle. The momentum in the r-~b plane, 

Pr, is measured with a resolution of ( t r ( p r ) / p t )  2 = 
0.022 + (0.0015. pt )  2, (Pt in GeV) for [cos01 < 
0.73. The jet chamber also provides measurements of 
the ionization, d E / d x ,  of charged tracks. The average 
resolution is 3.5% for 159 samples [8]. 

Electron and photon energies are measured by 
the barrel and endcap lead-glass electromagnetic 
calorimeters. These detectors cover the full azimuth 
in the polar angle range of I cos01 < 0.84 for the 
barrel and 0.81 < I cos01 < 0.984 for the endcaps. 
The forward detectors on both sides of the interaction 
point cover the polar angle region between 34 and 
120 mrad. When high energy electrons or photons are 
incident on the gap of 0.8% in solid angle between 
the endcap lead-glass and the forward detector, some 
fraction of the shower is usually detected at the edge 
of one of these calorimeters. Thus, photons and elec- 
trons are detected with an acceptance of almost 47r. 
The barrel lead-glass blocks have a pointing geome- 
try. To achieve good hermeticity, the small 1 mm gaps 
between the lead-glass blocks do not point exactly to 
the interaction point. The intrinsic energy resolution 
of the calorimeter is 5 -6%/v/E which is degraded by 
about a factor of two by the material of the magnet 
coil and the pressure vessel in front of the calorimeter, 
The effect of material is more significant in the region 
near the overlap of the barrel and the endcap calorime- 
ters (0.72 < I cosOl < 0.84). The angular resolution 
of electromagnetic clusters is approximately 4 mrad 
both in 0 and ~b for energies above 10 GeV. 

The hadron calorimeter is made up of three sec- 
tions: the barrel, the endcap and the pole tip, which 
together cover the region [cos 01 < 0.99. The mag- 
net return yoke is instrumented with limited streamer 
tubes in the barrel and endcap sections, and with thin, 
high gain chambers in the pole tips. There are nine 

layers of chambers in the barrel, eight in the endcap, 
and ten in the pole tips. These are read out with nar- 
row strips, and by pads which are grouped together 
to form towers. The strips are used for tracking, and 
for muon identification. The towers are used for en- 
ergy measurement, for which the resolution is t r / E  = 
120%/vrE. 

There are at least seven, and in most regions eight, 
absorption lengths of material between the interac- 
tion point and the muon detectors. Muons with mo- 
menta above 3 GeV usually penetrate to the muon 
chambers. The muon barrel detector covers the region 
I cos01 < 0.7. It is composed of four layers of planar 
drift chambers, with cylindrical geometry. These give 
a position accuracy of 1.5 mm in r-~b and 2 mm in 
z. The muon endcap detector covers the polar angle 
range 0.67 < I cos01 < 0.98. It is composed of two 
planes of limited streamer tube arrays at each end of 
the detector, yielding resolutions of 1-3 mm on the x 
and y coordinates. The z coordinate is known from 
the surveyed positions of the chambers. The two muon 
detector subsystems cover 93% of  the full solid angle. 

3. Data sample and simulation 

About 1.9 million hadronic Z ° decay events, cor- 
responding to an integrated luminosity of 78 pb - I ,  
were collected by the OPAL experiment in the period 
1990-1993. To ensure the reliability of the event re- 
construction, data were used only if all major compo- 
nents of the detector were fully operational. The tracks 
used in the analysis were required to originate at the 
interaction point, to have a minimum number of hits 
in the jet chamber, and to have a transverse momen- 
tum greater than 0.1 GeV. Energy clusters in the elec- 
tromagnetic and hadron calorimeters were required to 
exceed minimum energy thresholds. The precise re- 
quirements on tracks and clusters are given in [5]. 
Spurious tracks with high momentum distort a num- 
ber of variables, such as event acolinearity and acopla- 
narity, which were used in the analysis. To avoid such 
effects, events containing one or more tracks with mo- 
mentum greater than 25 GeV, but which had a poor 
track fit, and events containing tracks with momentum 
greater than the beam momentum have been excluded 
from the analysis. This rejected 0.4% of the data. 

An algorithm has been developed to calculate 
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masses, energies and momenta, for any desired set 
of tracks and calorimeter clusters using information 
from all detector components, and which eliminates 
double counting the effects of tracks and clusters 
[5]. This algorithm, termed the GCE algorithm, was 
used to calculate variables required for the analysis 
described in the sections below. In particular it was 
used to calculate the observed mass of events, with 
a resolution (~rm/m) ~ 12%, and with a mass shift 
given by mobs = 0.87 X mtrue- 

Monte Carlo events for the main background pro- 
cess, e+e--+hadrons were generated using the JET- 
SET [9] and HERWIG [ 10] programs and the detec- 
tor response was simulated using the GOPAL program 
[ 11 ]. The generators were tuned to reproduce global 
event-shape variables measured with OPAL data [ 12]. 
Simulated signal events were produced by the gen- 
erator described in [ 13], with some modifications to 
improve the efficiency of the calculation [ 14], and 
processed in the same manner as the data. 

4 .  S e a r c h  f o r  Z ° - - - ~ , ~  H ° ,  w i t h  H ° - - + q ~ l  

The neutrino channel accounts for approximately 
70% of the search sensitivity. 

Unlike the case of  the search for a lower mass H °, 
missing energy becomes an unreliable indicator of the 
presence of a high mass H ° because of the non-zero 
width of the missing energy distribution for hadronic 
Z ° decays. The experimental signature of  events con- 
taining Higgs bosons used in this analysis is a pair of 
jets which are not back-to-back. 

To identify events with this topology, the analyzed 
events were split into two hemispheres using the plane 
orthogonal to the thrust axis. The momentum vector 
of  each hemisphere was calculated and the acolinear- 
ity angle (0acol, the complement of  the 3-dimensional 
angle between the two momentum vectors) and the 
acoplanarity angle (0aeop, the complement of the angle 
between the projections of  the two momentum vectors 
onto the plane perpendicular to the beam direction) 
were computed. Momentum conservation in hadronic 
Z ° decays keeps the observed hemisphere momentum 
vectors back-to-back: an event displaying a significant 
deviation from a back-to-back topology is either the 
result of energy loss down the beam-pipe or the pres- 
ence of high energy neutrinos from heavy quark de- 

cays, or possibly due to the process Z*---~H°v~. 

4.1. Selection procedure 

An initial selection of events having cos 0aeoi < 0.98 
was made in order to decrease the number of events 
to be analyzed. 

The high track and cluster multiplicities of  a heavy 
Higgs boson decay allow rejection of virtually all lep- 
tonic Z ° decays, including most r % - -  events with a 
converting photon. The following requirements were 
made: 
- Each event was required to contain at least seven 

charged tracks. 
- Each event was required to contain at least seven 

clusters in the electromagnetic calorimeter. 
- The thrust for events containing fewer than nine 

charged tracks was required to be less than 0.95. 
The identification of signal events is based on their 

large acolinearity and acoplanarity angles. To ensure 
good energy containment, which is crucial for a reli- 
able measurement of  these angles, events with a large 
energy flow near the beam pipe were eliminated by 
the following cuts. 
- The energy deposited in the forward calorimeters 

was required to be less than 2 GeV. 
- The missing momentum direction was limited to the 

range Icos0pm I < 0.94, where Op,~,, is the polar 
angle of the missing momentum vector. 

- The forward energy flow, defined as (E2F +E 2 )/E2tot, 
was required to be less than 10. Etot is the to- 
tal energy of the event, EF and En are the to- 
tal weighted energies observed in the forward and 
backward cones defined by [ cos 01 > 0.8. The ener- 
gies of charged tracks and electromagnetic clusters 
with polar angle 0 are weighted by sin -2 0, which 
gives more importance to energy of tracks and clus- 
ters near the beam-pipe. 

- The z-component of the total event momentum was 
required to be less than 20 GeV. 
Background from two-photon interactions was re- 

duced by: 
- The invariant mass of  the event was required to 

be greater than 25 GeV for events having a total 
transverse momentum, relative to the beam axis, 
less than 10 GeV. 
The measurement of  the acolinearity and acopla- 

narity angles is more accurate for two-jet events than 
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for spherical events. To ensure accurate evaluation of 
these angles, spherical events were rejected by: 
- The event thrust was required to be greater than 

0.70. 
Hadronic Z ° decays with little missing energy had 

already been removed by the initial acolinearity selec- 
tion, and the remaining events at this point were well- 
contained multi-jet events (having three or more jets). 
The missing momentum vector in jets with underesti- 
mated energy (due to the presence of energetic neu- 
trinos coming from heavy flavor decays, or a poorly 
measured energetic neutral hadron) points along the 
direction of the jet, in contrast to H ° events where 
the missing momentum vector points along the Z* 
flight direction. Hadronic Z ° decays with the energy 
of one jet underestimated were removed by requiring 
the missing-momentum vector to be isolated: 
- The sum of the charged track energy and the cluster 

energy in the electromagnetic and hadron calorime- 
ters was required to be less than 2.0 GeV in a cone 
of half-angle 45 ° around the missing-momentum 
vector. 
The remaining background was from almost back- 

to-back Z ° multi-jet events with energy in more than 
one jet underestimated. These events were removed 
by the stringent acolinearity and acoplanarity require- 
ments given below. The widths of the distributions of 
these variables depended both on the location of the 
tracks and clusters in the detector, and on the shape of 
the event, and thus on the selection requirements. 

The GCE algorithm was used to calculate the mass 
and thrust for each hemisphere using tracks and clus- 
ters of that hemisphere. Higgs events, which gener- 
ally contain one jet per hemisphere, are characterised 
by a relatively low reconstructed hemisphere mass, 
and high hemisphere thrust. Multi-jet events have at 
least one hemisphere with more than one jet. These 
hemispheres are characterized by relatively high re- 
constructed mass, and low hemisphere thrust. 

The average of the two hemisphere masses, m~ vg, 
is used together with the lower of the two thrust values 
calculated for each hemisphere separately, hT~e n ,  to 
separate events into three classes. The first has a clear 
two-jet topology (class A) and contains 75% of the 
signal for a H ° of mass 60 GeV. It is defined by: 

avg 
- C l a s s  A is the region mhemj<11 GeV and 

hr  mni>0.85. 
In this class a small deviation from a back-to-back 

topology is enough to tag an event as a Higgs boson 
candidate. The second class (class B) contains events 
with an ambiguous jet topology and is defined by: 
- C l a s s  B is the region m ~ g < 2 0  GeV and 

hT~e~>0.70 (excluding class A). 
In this class, which contains 24% of the signal, a larger 
deviation from a back-to-back topology is required. 
Events in neither of the above classes (about 1% of the 
signal) have a clear multi-jet topology which prevents 
a reliable separation of signal from background, and 
are not accepted. 

In general, the acolinearity and acoplanarity angles 
are better measured when both hemisphere momentum 
vectors are in the barrel region (135 ° > 8 > 45°). 
The superior resolution in the barrel allows looser cuts 
on the signal in this region compared to the cuts re- 
quired for the endcap region. The numerical values of 
the acolinearity and acoplanarity cuts applied in the 
two regions are given in Table I below. 

Classes A and B as defined above are outlined in 
avg Fig. 1, which shows the mhem~ versus hT~e~ distribu- 

tion of a 60 GeV Higgs boson signal, together with 
the same distribution for data events. The initial aco- 
linearity cut removed most of the Z ° hadronic decay 
events that would otherwise fail into class A. In Fig. 2, 
cos 8a¢ol is plotted against cos 0atop for all events be- 
longing to each class, together with simulated hadronic 
Z ° decay events. H ° events are characterized by much 
broader cos 0acol and cos Oaco~ distributions than the 
background and a sizeable fraction of the signal events 
is accepted by these cuts. 

Table 2 gives the number of events for the data, sim- 
ulated hadronic Z ° decays and simulated H ° events 
after the successive cuts of the neutrino channel anal- 
ysis. 

One event, with mass (after taking into account the 
systematic shift discussed in Section 3) of 28.9 q-3.5 
GeV was selected by these cuts. Higgs bosons in this 
mass region have been already excluded in previous 
OPAL publications [4,5]. As the mass of this event 
is far from the current mass limit, in terms of mass 
resolution, the effect of this candidate on the present 
lower mass bound is negligible. 

4,2. Background and systematic error estimation 

The dominant background is from hadronic Z ° de- 
cays, with final states containing either very energetic 
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Table I 
Class definitions and value of  the cuts on the cosine of the acohnearity angle and the cosine of the acoplananty angle, for the u~H ° search 

Class '77nmhem~ mhemlaVg Region cos 0ac.o I cos 0aeop 

A 0 85 - 1 00 0 - 11 GeV barrel < 0.95 < 0.98 
endcap < 0 90 < 0.98 

B 0.70 - 1 00 0 - 20 GeV 
(excluding class A) barrel < 0.85 < 0.95 

endcap < 0.70 < 0.95 

Table 2 
Numbers of  events after successive cuts in the neutrino channel, for the data, for simulated Z°---,qCl events and for a H ° of mass 60 GeV 

Cuts Data Z°~q~l ~,~H ° 

Preselection 63776 (3.30%) 29830 (1.55%) 4 8 (83%) 
Tau rejection 33909 (1 76%) 29163 (1.51%) 4 7 (82%) 
Forward energy 17947 (0.93%) 17716 (0.92%) 4 ! (71%) 

reJection 17265 (0.89%) 17714 (0.91%) 4.1 (71%) 
Thrust and Missing Momentum 1984 (0.10%) 2128 (0.11%) 2.6 (45%) 
Acolinearity/acoplanarity 1 (0 00%) 1.4 (0 00%) 1.9 (33%) 

The numbers of simulated Z°---~qq events have been scaled so that the real and simulated data sample sizes are the same. The numbers 
between parantheses gwe efficiencies 

neutrinos, or very energetic, long-lived neutral hadrons 
mismeasured in the hadron calorimeter. 

A large sample of  inclusive hadronic Z ° decays was 
generated consisting of approximately 1.4M JETSET 
events together with a sample of  approximately 0.3M 
HERWIG events. In addition, a sample of events pre- 
selected at the generator level for the presence of a 
high energy neutral hadron or neutrino has been anal- 
ysed. This sample corresponded to 33M Z ° decays. 
Four simulated events survived the analysis cuts, of  
which one came from the inclusive sample, and con- 
tained an energetic KL. The expected background from 
this source is estimated to be 0.15 events. The number 
of  simulated events passing the analysis cuts is small 
compared to the size of  the simulated event sample, 
and unknown systematic effects in the simulations pre- 
clude evaluating a realistic error on the background 
estimate. Two photon events were not simulated, but 
are not expected to give rise to high mass hadronic 
systems. 

The systematic uncertainties are summarized below: 
- luminosity: 1.3%. 
- signal selection efficiency: 1.8%. 
- Higgs boson production cross-section: 1%. 
Summed in quadrature, the overall uncertainty is 2.4%. 

Table 3 
Efficiencies and expected number of events for the neutrino and 
charged lepton channels 

mHo(GeV) e ~ ( % )  N~x~p ee+ t - (%)  NPg-exp NtdxpO~l 

30 43 75.8 27 16.7 92.6 
40 53 35.1 49 11.7 46.8 
50 45 10.0 49 3.9 13.9 
55 41 4.7 43 1.9 6.5 
60 33 1.9 38 0.8 2.6 
65 23 0 6 27 0.2 0 8 

The numbers of  events have been reduced by the systematic error. 

Table 3 gives the efficiencies of  the neutrino channel 
search for various Higgs boson masses. To avoid an 
overestimation of the numbers of expected events due 
to systematic effects, these numbers have been reduced 
by one standard deviation of the systematic error. 

The present analysis excludes a Minimal Standard 
Model Higgs boson with mass up to 57.5 GeV at 
the 95% confidence level, using the neutrino channel 
alone. 
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5. Search  for  Z ° - - * ( e + e - o r  # + / z - ) H  °, wi th  
H°-- ,q~l  

The experimental signature for Minimal Standard 
Model Higgs boson events in the charged lepton chan- 
nel is a pair of well isolated energetic charged leptons 
produced together with a high mass hadronic system. 
Only electron and muon pairs have been considered 
in this analysis. Four-fermion processes [ 15,16] give 
rise to background in this channel. 

5.1. Selection procedure 

An initial selection was made to reduce the number 
of events to be studied in the later stages of the anal- 
ysis. The preselection requirements were as follows. 
- The lepton tracks were required to have opposite 

charge. 
- The lepton track momenta were required to be above 

3.0 GeV. 
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Fig. 2. The acohnearlty cosine versus acoplanarity cosine for 
events in classes (i) A-barrel, (il) A-endcap, (iii) B-barrel and 
(w) B-endcap after all other cuts have been applied The stars 
represent the data, and the circles represent the simulated hadronic 
Z ° decays. The simulated event sample has approximately half the 
number of events of the data sample. Accepted events he within 
the boxes in the lower left of the plots. There are no events (data 
or mmulated data) in the accepted region off the figure scale. 

- The opening angle between the lepton tracks was 
required to be greater than 30 ° . 

The electron preselection requirements were as fol- 
lows. 
- Each electron track was required to be associated 

with a cluster in the electromagnetic calorimeter. 
The azimuthal angle of the track, at the entrance to 
the calorimeter, was required to be within 20 mrad 
of the cluster. 

- The cluster energies were each required to be above 
3.0 GeV. 

- The sum of the two cluster energies was required 
to be greater than 20.0 GeV. 

The muon preselection requirements were: 
- Each muon track was required to be associated with 

a cluster in the electromagnetic calorimeter. The 
azimuthal angle of the track, at the entrance to the 
calorimeter, was required to be within 150 mrad of 
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the cluster. 
- At least one o f  the muon tracks was required to have 

more than four hits in the hadron calorimeter. 
- Each track was required to have two or more hits in 

the last five layers o f  the hadron calorimeter, or two 
or more hits in the surrounding muon chambers. 

- The scalar sum of  the momenta o f  the two muon 
tracks was required to be greater than 20.0 GeV. 

The events were then subject to the following cuts 
common to the electron and muon channel analyses. 
- Each lepton track was required to have a momentum 

greater than 5.0 GeV. 
- Each lepton track was required to have [cos0  I 

< 0.92. 
- The event was required to have more than three 

tracks excluding those within 15 ° of  the lepton 
tracks, and excluding the lepton tracks. 

- The event was required to have more than five clus- 
ters in the electromagnetic calorimeter. 

- The event was required to have less than 2.0 GeV 
deposited in the Forward Detectors. 

The pair was identified as a /~+/~-  pair if: 
- The scalar sum of  the momenta of  the two tracks 

was greater than 25.0 GeV. 
- Each track was associated with a track segment in 

the hadron calorimeter seen in at least three out of  
the outer five strip layers. 

- At least one o f  the tracks was associated with a track 
segment in the muon chambers seen in at least three 
o f  the four planes. 

- The sum of  the electromagnetic calorimeter ener- 
gies associated with the tracks was less than 5 GeV. 

The pair was identified as an e+e - pair if: 
- Each of  the two tracks had an associated electro- 

magnetic calorimeter cluster with energy of  at least 
5 GeV, with 90% of  this energy contained in less 
than 5 lead-glass blocks. 

- Any hadron calorimeter cluster associated with the 
tracks had an energy less than 4 GeV. 

- The sum of  the energies o f  the two associated 
electromagnetic calorimeter clusters was at least 
25 GeV. 

- The dE/dx  of  tracks with momentum less than 15 
GeV and at least 40 dE/dx  hits, was required to be 
consistent with electrons, i.e. it was required to be 
greater than 9.17 keV/cm,  which is two standard 
deviations below the mean dE/dx  for electrons. 

- The E / p  ratio o f  tracks satisfying [ cos0  1< 0.72 
or [ cosO[  > 0.84 was required to exceed 0.7. The 
cut was not applied in the region 0.72 < [ cos 01 < 
0.84 where the presence of  extra material degrades 
the energy measurement. 
Each of  the two candidate charged lepton tracks was 

required to be isolated from other tracks and clusters 
in the event. The following two tests o f  the lepton 
track isolation were performed: 
- The scalar momenta of  charged tracks in a cone of  

half-angle 30 ° about each lepton track, excluding 
the lepton momenta, were summed. The ratio o f  this 
sum to the sum of  the scalar momenta of  tracks in 
the event, excluding the lepton momenta, was re- 
quired to be less than 0.2. The test was repeated 
using clusters in the electromagnetic calorimeter in- 
stead o f  charged tracks. 

- The previous isolation test was repeated using a 
cone of  45 ° about the higher momentum lepton 
track, and a cone o f  15 ° about the lower momentum 
track. 
The first test had a higher probability to select events 

for which the angle between the lepton pair and the Z* 
flight direction, in the Z* rest frame, was close to 90 °, 
while the second test selected events where this angle 
was close to 0 °. Events were kept for further analysis 
if they passed either isolation test. A final isolation 
requirement was made: 
- The sum of  the scalar momenta o f  tracks within 15 ° 

o f  the lepton tracks, but excluding the lepton tracks, 
was required to be less than 1 GeV. 

If  more than one lepton pair was found in an event, the 
pair with the smallest sum of  charged track and elec- 
tromagnetic cluster energies in 30 ° cones centered on 
the leptons (excluding the tracks and clusters associ- 
ated with them) was chosen. 

Fig. 3 shows the lepton isolation quality in the data. 
Twenty-nine out o f  the 1970 events with two identified 
leptons survived the isolation cuts. 

Four-fermion processes remained to be suppressed. 
In most four-fermion events, one fermion pair origi- 
nates from the decay of  the Z ° and so has large mass, 
while the other pair originates from a virtual photon, 
and is characterized by a low mass. The momentum 
and opening angle cuts suppress events with low di- 
lepton mass and high hadronic mass. Fig. 4 shows the 
mass of  the lepton pair versus the hadronic mass af- 
ter isolation cuts. Fig. 4a shows the data while Fig. 4b 
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shows the four-fermion events simulated with the gen- 
erator FERMISV [17] for an integrated luminosity 
that corresponds to 100 times the integrated luminos- 
ity of the data sample. Detector simulation was not 
performed for these events. The distribution is seen to 
extend to high hadronic mass. 

To reject four-fermion events, the following require- 
ments were made: 
- The invariant mass of the lepton pair was required 

to be greater than 15 GeV. 
- The invariant mass of all tracks and clusters lying 

outside 15 ° cones about the lepton tracks was re- 
quired to be greater than 25 GeV. 
Tables 4 and 5 give the numbers of events for the 

data, for simulated hadronic Z ° decays and for simu- 
lated H ° events after the successive cuts of the electron 
and muon channel analyses. 

One event is accepted by the charged lepton chan- 
nel selection procedure. The event has two energetic 
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Frg. 4. The dl-lepton mass versus the mass of  the hadromc system 
after the isolation cuts for (a) data (b) simulated fonr-ferrmon 
events. The honzontal and vertical lines show the minimum 
dl-lepton and hadronic system masses accepted by the analysis. 
The number of  events in (b) corresponds to 100 times the lumi- 
nosity of  the data sample, and shows the long tail of  the hadromc 
mass distribution. The generator was mn  with a rmnimum thresh- 
old of 10 GeV on both the di-lepton and hadronic masses. Events 
with high recoil mass and low di-lepton mass are further sup- 
pressed by the requuements on the momentum and opening an- 
gle of  the pair. The hadromc mass values have been smeared to 
reproduce the observed recoil mass resolution. 

isolated muons and a three-jet hadronic system. The 
muons are clearly identified by both the muon cham- 
bers and the hadronic calorimeter. They are well iso- 
lated, having no energy in a cone of 30 ° half-opening 
angle. The di-muon invariant mass is 16.64-0.3 GeV 
and the mass of the hadronic system calculated from 
the recoil mass of the two muons is 61.2 + 1.0 GeV. 
The mass of the hadronic system is measured to be 
54 ± 7 GeV (after correction for the mass shift dis- 
cussed in Section 3). 

There is some indication that the most energetic jet 
contains a heavy flavor hadron. It contains a signifi- 
cantly displaced secondary vertex (4.4 or) with four 
charged tracks, one of which is a 1.5 GeV electron 
with associated hits in both silicon micro-vertex lay- 
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Table 4 
Numbers of events after successive cuts in the muon channel, for the data, for simulated Z°----~q(l events and for a H ° of mass 60 GeV 

Cuts Data Z°---~qq /z+/x-H ° 

Preselectmn 139481 (7,00%) 149129 (7.49%) 0.82 (81%) 
Common 64754 (3.25%) 74523 (3 74%) 0.74 (74%) 
/.t-pair Identification 1658 (0.08%) 2187 (0 11%) 0.65 (65%) 
Isolation 15 (0 00%) 0 (0 00%) 0 50 (49%) 
Di-lepton Mass 15 (000%) 0 (0.00%) 0.41 (41%) 
Hadronic Mass 1 (0 00%) 0 (0.00%) 0.41 (41%) 

The numbers of simulated Z°--*qq events have been scaled so that the real and simulated data sample sizes are the same. Four-fermion 
events are not included in this simulation The numbers between parantheses give efliciencies. 

Table 5 
Numbers of events after successive cuts m the electron channel, for the data, for simulated Z°---*qq events and for a H ° of mass 60 GeV 

Cuts Dam Z°--,qq e+e-H ° 

Preselection 139957 (7.03%) 149129 (7.49%) 0.78 (77%) 
Common 64978 (3.26%) 74523 (3.74%) 0.68 (68%) 
e-pair Identification 312 (0.02%) 502 (0.03%) 0 53 (52%) 
Isolation 14 (000%) 0 (000%) 041 (41%) 
Di-lepton Mass 14 (0 00%) 0 (0.00%) 0.35 (35%) 
Hadronic Mass 0 (0.00%) 0 (0.00%) 0.35 (35%) 

The numbers of simulated Z°---,qq events have been scaled so that the real and simulated data sample sizes are the same. Four-fermion 
events are not included in this simulation. The numbers m parentheses give efficiencles. 

ers, and no accompany ing  posi t ron candidate.  

There  is no clear  indicat ion o f  heavy flavor content  

in e i ther  o f  the o ther  two  jets.  However ,  one  o f  these 

je t s  has a low po la r  angle,  and for this j e t  no rel iable  

secondary  vertex f inding can be performed.  

The  event  is shown in Fig.  5 and its proper t ies  are 

summar ized  in Table 6. 

5.2. Background and systematic error estimation 

The  lepton ident i f icat ion procedure  was appl ied to 

s imula ted  Z ° d i - lep ton  events,  and to di - lepton events 

in the data. The  d i f ference  in the eff iciencies o f  the pro-  

cedure  for  these two  event  samples,  which  was found 
to be 7%, was used to correct  the eff iciency obta ined 

for  s imula ted  Higgs  boson events.  The  correct ion was 

calcula ted us ing main ly  b e a m  energy leptons,  whi le  

the m o m e n t u m  dependence  was studied using elec-  

trons and muons  c o m i n g  f rom tau decays.  The  correc-  
t ion fac tor  de te rmined  in this manner  is appl icable  to 
the eff iciencies for  Higgs  boson events  as the lepton 

pairs are isolated in all cases. The  uncertainty in the 

correc t ion  was taken to be the systemat ic  error  on the 

Table 6 
Properties of the event selected in the charged lepton channel 

Property Cut value Event 15048 
Run 4353 

p~-  5 7.3 -4- 0.2 
p~+ 5 19.3 4- 0.7 
p~+ + p~-  25 26 6 -4- 0.7 
m ~  15 16.6 q- 0 3 
Minimum/z+/.t - 30 89 
opening angle 
Mass of the 25 544-7 
hadronic system 
Radius of - -  1.64-0.4 
displaced vertex 
Recoil mass - -  61.24-1.0 
agamst p/~ 
Center-of-mass - -  91.17 
energy 

Momenta, masses and energies are expressed m GeV, angles in 
degrees and distances in millimeters. 

lepton identif icat ion procedure.  The  contr ibut ions  to 

the systemat ic  errors are: 

- Luminos i ty :  1.3%. 
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- Higgs boson production cross section: 1%. 
- Final state radiation: 1%. 
- Lepton identification: 0.8%. 
which, added in quadrature, gives an overall uncer- 
tainty of  2.1%. Table 3 gives the efficiencies of  the 
charged lepton channel search for various Higgs boson 
masses. To avoid an overestimation of  the numbers of  
expected events due to systematic effects, these num- 
bers have been reduced by one standard deviation of  
the systematic error. 

The expected background in the charged lepton 
channel is from four-fermion events. For a hadronic 
mass greater than 25 GeV, 2.0+0.7 events are ex- 
pected. Only events with mass greater than 50 GeV 
would significantly affect the mass limit, and 0.55:0.1 

background events are expected in this region. 
The present analysis excludes a Minimal  Standard 

Model Higgs boson with mass up to 51.9 GeV, at 
the 95% confidence level, using the charged lepton 
channel alone. 

6 .  M a s s  l i m i t  

The efficiency for each decay channel and the num- 
ber o f  expected events for several Higgs boson masses 
are shown in Table 3. The neutrino channel gives a 
95% confidence level lower mass l imit  of  57.5 GeV, 
while the leptonic channel gives a lower mass l imit  
of 51.9 GeV. The mass of  the event which is ob- 
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Fig. 6. The number of  expected Hlggs boson events as a function 
of  the Higgs boson nmss. The horizontal hne shows the number of  
events required to establish a limit at the 95% confidence level. The 
dotted line shows the number of  expected events in the charged 
lepton channel, the dashed line shows the number in the neutrino 
channel, and the sohd hne shows the sum of expected events in 
both channels The arrow shows the new lower hmlt at 56.9 GeV. 

served in the leptonic channel is close to the combined 
limit. Due to a possible shift in recoil mass due to ini- 
tial state radiation, a conservative approach was taken 
in combining the two channels. The limit was calcu- 
lated in the presence of one candidate event, and no 
background events. This procedure resulted in a 95% 
C.L. lower mass limit for the Minimal Standard Model 
Higgs boson of 56.9 GeV. Fig. 6 shows the number 
of  expected events for the combined analysis, and in 
the two search channels separately. 

7. Conclusion 

A search has been made for the Minimal Stan- 
dard Model Higgs boson with the OPAL detector at 
LEP using a data sample with an integrated luminos- 
ity of  78 pb -1 . The reactions used were e+e---~Z*H °, 
H°---~hadrons and Z*--~(~,# or e+e - o r / z+ /z - ) .  The 

search has a high efficiency to detect the Higgs bo- 
son in the mass range 25-65 GeV. One event with 
mass 28.9-/-3.5 GeV passed the Z*---~1,# selection. 
One event with recoil mass 61.24-1.0 GeV passed the 
Z*---,/z+/.t - selection. The effect of  the candidate with 
mass 28.9 GeV on the mass limit is negligible. The 
expected number of  background events in the charged 
lepton channel for hadronic masses greater than 25 
GeV is 2.04-0.7, of which 0.54-0.1 were expected to 
have a mass in excess of 50 GeV. The event observed 
in the charged lepton channel has a mass near the 
mass limit, and the conservative procedure of  taking 
this event as a candidate event was followed. The new 
lower mass limit for the Minimum Standard Model 
Higgs boson was calculated to be 56.9 GeV at the 
95% confidence level. 
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