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Abstract. Three-jet variables constructed f rom multi-had- 
ronic events produced by Z ~ decays are compared  to 
theoretical calculations assuming a vector gluon or a hy- 
pothetical scalar gluon. The data  yield conclusive direct 
evidence for the former  case. The distributions o f  the 
reduced energy of  the second-most  energetic jet and of  
the cosine o f  the Ellis-Karliner angle are chosen to dem- 
onstrate this effect. 

1 Introduction 

The theory o f  quan tum chromodynamics  (QCD)  postu- 
lates that the gluon, the gauge boson of  the strong force, 
is self-interacting and has one unit o f  spin. In the last 
decade a vast  amount  o f  data  has been accumulated and 
has been seen to agree well with this theory. The special 
properties o f  hadronic  three-jet events resulting f rom 
e + e -  annihilation, where one of  the quark-ant iquark  
pairs radiates a gluon, are also well described by Q C D  
theory, either in the form o f  second order matrix element 
calculations or  pa t ton  shower models. Al though  small 
differences between data  and Monte  Carlo remain in the 
case o f  O (c~ 2) models, properties dominated  by three-jet 
product ion  are well reproduced [ 1 ]. The bulk o f  the avail- 

able data, however, does not  provide direct evidence for 
the value o f  the gluon spin. Several groups at P E T R A  
[2-5] measured three-jet distributions sensitive to the 
gluon spin, but  at energies a round  30 GeV the effect was 
relatively small due to lower statistics and larger hadron-  
ization backgrounds,  and the conclusions were based 
solely on first order theory. Other  direct evidence for the 
gluon spin was provided by an analysis of  the decay of  
the F resonance into three gluons [6]. The gluon spin 
affects also the spatial orientation o f  three-jet events with 
respect to the beam axis in e + e annihilation [7, 8], but  
the discriminating power is small. Finally, in p - - p  col- 
lisions the angular  distribution of  jets shows evidence for 
the gluon spin [9], and the distribution o f  high P r  leptons 
is also predicted to depend on it [10]. 

For  measurements  o f  hadronic  events in e * e  anni- 
hilation the higher energies o f  LEP  result in better jet 
definition, allow for smaller hadronisat ion corrections 
and yield higher statistics at the Z 0 resonance. This per- 
mits the selection of  three-jet distributions with an un- 
ambiguous discrimination between scalar and vector 
gluon theory. 

We present here an analysis o f  about  1.3 • 105 had- 
ronic events obtained with the O P A L  detector at LEP 
during the 1990 data  taking run, collected around the Z ~ 
pole. A similar analysis was recently published by the L3 
col laborat ion [8]. 
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2 Method 

Tests for the vector or  scalar nature o f  gluons are based 
on a compar ison of  suitable experimental distributions 
to theoretical expressions, calculated either with the vec- 
tor  or scalar hypothesis. The distributions should be cho- 
sen such that  the differences between the expected vector 
and scalar distributions are maximized. The first order 
cross-sections for the product ion  o f  three-jet events, be- 
cause o f  their simplicity, are well suited to illustrate the 
method.  



To first order the cross-section for producing a three- 
jet event in e § e annihilation is proportional to [ 11 ]: 

d 2 o_v ( x l ,  x2 ) x12 _ _ x  22 

d x l d x  2 (1 -- Xl) (1 --X2)" 
(1) 

2 ~  
Here x, = Ecm, i = 1, 2, 3 and xt + x 2 -}- x 3 = 2. Ecru is the 

total energy of the event. The x~ are the reduced energies 
of  three emitted partons q, q, g, which hadronize into jets. 
Since we shall only be interested in the shapes of  distri- 
butions, we omit here and in the following all constant 
factors in front of  the cross-section expressions. 

Equation (1) makes several assumptions: 

(i) It applies to massless partons only. 
(ii) It  assumes that jets labelled 1 and 2 originate from 
the primary quark and antiquark and that the third jet 
originates from a gluon, radiated by one of the quarks. 
(iii) The gluon is a vector particle. 

After fragmentation of  the partons into jets consisting of  
real particles, condition (i) cannot be strictly satisfied, 
but at LEP energies the correspondence between jets and 
the original massless partons is expected to be much im- 
proved, compared to previous measurements. One can 
approximate condition (ii) by ordering jets according to 
their energy so that x~ > x 2 > x 3. The jet with the lowest 
energy has then an enhanced probability to correspond 
to a primary gluon. To account for the finite probability 
that the more energetic jets 1 and 2 might also originate 
from a gluon, one has to add to (1) symmetric terms 
obtained by cyclic permutations of the x~ (see Appendix 
(13)). 

Equation (1) is usually derived under the assumption 
that a photon mediates between the initial and final state. 
On the Z o peak it is necessary to account for axial vector 
as well as vector couplings, but the shape of the x~,x 2 
distribution corresponding to a vector gluon remains un- 
changed. For  a scalar gluon the cross-sections from vec- 
tor and axial vector couplings are different [12]: 

d 2 o'(Sv)(Xl, X2) [(1 - -  X1) ~- (1 - -  x2)]  2 

d x l d X  2 (1 - Xl )  (1 - x 2 )  ' 
(2) 

d z a~A)(Xl, X2) [(1 - -  Xl )  - -  (1 - -  X2)] 2 

d x  I d x  2 (1 - Xl) (1 - x 2 )  

- 2 ( 3  - x ~  - x 2 )  (3) 

(for the symmetrized version see Appendix (14)). Here 
and in the following the upper index S or V refers to the 
type of gluon emitted, while the lower index (V) or (A) 
refers to the vector and axial-vector type couplings. 

I f  one keeps the xi ordered and lets x 2 (and therefore 
also x~) approach 1, one sees that the vector gluon cross- 
section a v goes to infinity, whereas the scalar cross-sec- 
tions a(Sv) and a(SA) tend towards a constant value. This 
statement remains true even if the other two cyclic terms 
given in the appendix are included, since the first term 
of the vector cross-section corresponding to (1) domi- 
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nates if x~ and x 2 are close to 1. This radically different 
behaviour between the scalar and vector cross-sections is 
the basis for the demonstration of  the gluon spin. 

The limiting factor in the discrimination power of  the 
analysis will be the experimental jet-resolution parameter  
Yc~ of the JADE jetfinder, used by us in this analysis to 
reconstruct and define three-jet events [13]. This param- 
eter Ycut represents the square of  the minimum invariant 
pair mass m~j divided by the total visible energy, which 
all pairs of  jets must have in order to be recognized as 
distinct jets. 

(mij)2 i,j=1,2,3, i . j .  (4) Ycut = 

For  massless partons in a three-jet configuration the 
maximum possible value of the x~ is x,. max= 1-Ycut. 
Since xl and x 2 close to 1 corresponds to the region of 
phase-space most sensitive to the gluon spin, a Ycut as 
small as possible is desirable. On the other hand, as x~ 
and x2--+ 1, the momentum of  the remaining third jet x 3 
tends toward zero and will therefore create experimental 
difficulties of  clean detection. Previous investigations of  
this effect at lower energies [2-5] used Yo~t values of  0.1 
with low discrimination power, whereas with the OPAL 
detector at the energies of  LEP, an experimental deter- 
mination of jets down to Ycut= 0.01 can be made. 'In a 
previous publication [ 14] we have shown that three-jet 
events can indeed the reliably reconstructed at such a 
small value of Ycut. 

Although (1) seems at first glance symmetric under 
exchange of x~ and x 2, the energy ordering imposed has 
the effect of  forcing x I to approach 1 together with x z, 
so that the x 2 distribution as defined here enhances the 
difference between vector and scalar gluon shapes. We 
therefore use for our experimental measurement the dis- 
tribution 

1 your d 2 0 - s , V ( X l , Y 2  ) dXl; 
i s, v (x2) = S dxl dx2 

X2 

x,>~;  x2<x, .  (5) 

At lower energies this distribution f ( X 2 )  w a s  not used to 
test the gluon spin, while two groups, P L U T O  [4] and 
CELLO [3] used the much less sensitive x~ distribution. 
Besides the influence of the mathematical pole one can 
intuitively understand the difference in sensitivity be- 
tween x~ and x 2 by realizing that, with the energy ordering 
imposed here, it is parton 2 which emits most  often the 
gluon and is therefore more affected. The Mark  J col- 
laboration [5] used yet another variable, namely the ratio 

x2 
- -  which represents the ratio of  scalar to vector gluon 2 X 2 ~- X 2 
cross-section. 

A different method, also suitable for discriminating 
between vector and scalar gluons, employs the so-called 
Ellis-Karliner angle [15], which was used by the TASSO 
[2] and UA2 collaborations [16]. The idea here is to boost 
from the laboratory frame to the CM frame of jets 2 and 
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1 q 
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2 2 

1 ~. / 
3 

Fig. 1. Def ini t ion of  the Ell is-Karl iner  angle 

3, so that they are emitted back-to-back (Fig. 1). The 
angle 0 between the direction of jet 3 and jet 1 in this 
frame is called the Ellis-Karliner angle and represents an 
angular distribution which can be measured. To obtain 
the cross-sections for this distribution to first order one 
has to transform the cross-sections of (1) and (2) from 
the {Xl, x2} representation to the {x,, cos 0EK } represen- 
tation. Since for massless partons one has: 

cOSOEK - x 2 - x 3  , (6) 
x I 

one obtains for vector gluons: 

d 2 a v  (x l, cos 0EK) 

dx  I d cos 0EK 

X12 -~ I1 -~- ~ (COS 0EK -- 1) ]  

(1 - x 0 ( 1  -- COS 0EK ) 
(7) 

and for scalar gluons (vector coupling term): 

d 2 o-(Sv) (x,, cos 0EK) 

dx  I d cos 0EK 

1 + 2  (1 -- COS 0EK ) 

(1 -- XI) (1 -- COS 0EK ) 
(8) 

Again the vector gluon cross-section has a pole at x~ = l, 
COS0EK= 1, whereas the scalar cross-section does not. 
Here also a corresponding additional term is needed for 
axial vector coupling. Taking into account all cyclic per- 
mutations of the x i yields expressions which can again be 
found in the Appendix ((16) and (17)). Normalizing these 
expressions to the value of 1 at cos 0EK = 0 reproduces 
the formulae cited in the original paper [15] by Ellis and 
Karliner (see also [22]). The authors of this paper use 
the thrust Tas  argument instead ofx~, since Tis an event 
variable which is equal to x~ in the limit of  massless 
partons. 

In analogy to the x 2 case the following one-dimen- 
sional distribution g (cos 0EK ) is used for comparison with 
experiment : 

1- -ycu t  d 2 o . s , g ( x l ,  cOSOEK ) 
gS, V (cos 0EK) = 5 ~-~ d cos 0EK dXl, (9) 

xl TM 

where Xp ain is the minimum value of x I allowed by kin- 
ematics and energy ordering, for a given cos 0EK. 

Another method of calculating these distributions in 
both the vector and scalar gluon cases is by the Monte 
Carlo method, which is conveniently done with the 
JETSET72 Monte-Carlo parton shower simulation pro- 
gram [17], which allows the user to switch between the 
two gluon hypotheses. The same program contains op- 
tions to use second order matrix element expressions to 
generate the q, q, g state, but only for the vector gluon 
hypothesis. For  our analysis, JETSET was used exten- 
sively to study the sensitivity of the distributions to ex- 
perimental cuts and model parameters, and to estimate 
effects of higher order. JETSET72 does not, however, 
incorporate the correction to the scalar gluon distribu- 
tions due to the axial vector coupling on the Z ~ peak. 
The author of this program [18] provided us with a 
modified version which takes this correction into account. 

3 Data selection 

The data were recorded with the OPAL detector [20] at 
the CERN e+e collider LEP. The tracking of charged 
particles is performed with the central tracking detector, 
composed of a vertex chamber, a jet chamber and a cham- 
ber for precision measurements in the z-direction, all en- 
closed by a solenoidal magnet coil (z is the coordinate 
parallel to the beam axis). The principal tracking detector 
is the jet chamber, which provides up to 159 space-points 
and close to 100% track finding efficiency for charged 
tracks in the region I cos 0 1 < 0.92. Electromagnetic en- 
ergy deposits ("clusters") are measured with the electro- 
magnetic calorimeter, a detector of lead-glass blocks lo- 
cated in both the barrel and endcap regions, each block 
of 40 • 40 mrad 2 cross section, for a total detector solid 
angle coverage of 98 % of 4 re. 

The trigger and online event selection for hadronic 
events are described in [21]. Additional criteria were ap- 
plied for this analysis to reduce the small level of  back- 
ground and to obtain well contained events. Charged 
tracks were accepted if they originated from within 5 cm 
of the interaction point in the direction perpendicular to 
the beam axis. The minimum transverse momentum was 
set at 150 MeV/c,  the absolute value of the cosine of the 
angle to the beam direction had to be less than 0.93 and 
the track was required to have at least 20 measured space- 
points. Electromagnetic clusters were accepted if they de- 
posited at least 0.2 GeV in the electromagnetic calorim- 
eter and if at least two contiguous lead glass blocks were 
included in the cluster. Noisy blocks were eliminated from 
the analysis. Hadronic events were required to contain 
at least 5 charged tracks and a polar angle for the thrust 
direction, defined using the accepted charged tracks 
and electromagnetic clusters, in the range 
I cOS (0thrust) I < 0.90. Events were also rejected if the vis- 
ible energy was less than 40 % of the CM energy, or if 
the total momentum imbalance exceeded 40 % of the CM 
energy. Finally the jet masses of the events, considered 
as two jet events for this purpose, were required to be 
greater than 2 GeV. From a data sample of 127 19l events 



at  ]/~ = 88.3 - 95.0 GeV used for  this analysis,  111 049 
events remained  af ter  all cuts. Using  a Ycut o f  0.01, 56 098 
three- je t  events were ob ta ined  for  fur ther  analysis.  

4 Measurements of x z and Ellis-Karliner distributions 

In o rde r  to compare  the present  measurements  with the- 
oret ical  calculat ions  at  the pa r ton  level, one must  unfold  
the measured  f (x2) and  g (cos 0zK ) d is t r ibut ions  for  de- 
tec tor  acceptance,  resolut ion,  ini t ia l-s tate  pho ton  radia-  
t ion and f ragmentat ion.  The fact that  Q C D  pa r ton  shower 
models  with different  mechanisms  for f r agmen ta t ion  de- 
scribe the deta i led  features o f  hadron ic  event  s t ructure  

f rom I / s =  30 to 91 GeV using energy independen t  pa-  
rameters  [1], implies tha t  these models  m a y  be used to 
es t imate  rel iably the size o f  the f r agmenta t ion  correct ions.  
The  J E T S E T  p a r t o n  shower mode l  [17] was used, which 
is based  on the leading log approx ima t ion ,  where the 
shower  is t e rmina ted  at a virtual '  p a r t on  mass  o f  
Q0 = 1 GeV. W i t h  this value of  Q0 the da t a  cor rec ted  to 
the pa r ton  level refer to a pa r ton  state with abou t  nine 
final s tate par tons .  The  correc ted  d a t a  will be c o m p a r e d  
to theoret ica l  ca lcula t ions  using bo th  shower and ma t r ix  
e lement  models ,  the la t ter  p roduc ing  at  mos t  only  four  
ha rd  par tons .  Wi th  the shower mode l  one can also pro-  
duce final states with only 4 pa r tons  by  te rmina t ing  the 
shower  p rematu re ly  at  Q0 = 4 GeV. This was used to ver- 
ify tha t  the 4 -momen ta  o f  the recons t ruc ted  jets  in three- 
je t  events are not  s ignif icantly affected by the p a t t o n  
shower  development .  The  unfold ing  p rocedure  is based  
on a deta i led s imula t ion  o f  the O P A L  de tec tor  and  is 
descr ibed  in [1]. I t  leads to b in-by-b in  correc t ions  de- 
fined, for  f (x2)  and  g ( c o s  0EK), by 

F ( r  ~ ~ l M . C -  

i = bin index ,  (10) 

Table 1. Results of the measurement of the distribution f(x2) at 
Ycut0.0l. i st column: x 2 values at bin center. 2 ~a column: corrected 
data at the parton level with statistical and systematic errors. The 
systematic errors include the differences between JETSET and 
HERWIG Monte Carlo calculations as well as differences between 
analyses using charged tracks plus electromagnetic clusters and 

547 

where M.C. f(X2)p~r,on refers to M o n t e  Car lo  events at  the 
p a r t o n  level, wi thou t  ini t ia l -s ta te  rad ia t ion ,  f r agmenta -  
t ion or  de tec tor  s imulat ion,  while f ( x 2 ) ~ t  ~ refers to 
M o n t e  Car lo  events at  the h a d r o n  level with ini t ia l -s ta te  
rad ia t ion  and detector  s imulat ion,  which have been passed 
th rough  the same recons t ruc t ion  and  selection a lgor i thms  
as the data .  The d is t r ibut ions  f "  xdata ~ ' ,  ~data ~,X2)meas" and  j ~,X2)parton 
are the direct ly  measu red  d is t r ibu t ions  and the measu red  
d is t r ibut ions  unfo lded  to the pa r ton  level, respectively.  
F o r  the measurements  charged  t racks  and e lec t romag-  
netic clusters no t  associa ted  to t racks* were used. 

In  our  analysis  we eva lua ted  x 2 using the angu la r  def- 
in i t ion:  

2s in  031 (11) 
x2 sin 012 + sin 023 + sin 031 " 

Here  032 is the angle be tween the two jets  oppos i te  to x 2. 
I t  was found  tha t  with this def ini t ion o f  x 2 the correc t ions  
between p a r t o n  and  h a d r o n  levels were smal ler  than  with  
o ther  defini t ions.  The  same cor rec t ion  p rocedure  is ap-  
plied to g (cos 0EK ), where 0~K is the El l i s -Kar l iner  angle.  
Fo l lowing  [ 15], this angle  was eva lua ted  using the thrus t  
T to boos t  jets  2 and 3 into their  C M  system. 

The  rat ios  def ined by  the terms in square  bracke ts  in 
(10) were ob ta ined  f rom the J E T S E T  p a t t o n  shower  
mode l  [17] wi th  p a r a m e t e r  values ad jus ted  to descr ibe  
g lobal  event shapes measu red  by  O P A L  [1]. Tha t  this 
mode l  plus de tec tor  s imula t ion  provides  a l ready  a rea- 
sonably  good  descr ip t ion  o f  the measured  d i s t r ibu t ions  
before the correc t ions  are  appl ied,  can be seen in co lumn 
3 o f  Tables  1 and 2, where  the ra t ios  D A T A / M C ,  which 
is the ra t io  o f  the measu red  d i s t r ibu t ion  to the M o n t e  
Car lo  one with full de tec to r  s imula t ion ,  are listed. One 
can see that  these ra t ios  are never  far  f rom unity,  a l t hough  

* A cluster in the electromagnetic barrel was not considered for 
association to a track if it fell outside a region delimited by 
AO = 150 mr and Ar = 80 mr. In the electromagnetic endcap 50 mr 
for both AO and Ar was used 

charged tracks or electromagnetic clusters alone. 3 rd column: ratios 
(data)/(detector level MC) with statistical errors. 4 th column: cor- 
rection factors for fragmentation with statistical errors. 5 th column: 
correction factors (partons)/(detector level MC) with statistical er- 
rors 

x 2 Data Ratio Correction factor Correction factor 
(bin center) (parton level) data/MC fragmentation partons/MC 

0.4925 0.009 __+ 0.003 • 0.005 1.146 __+ 0.343 1.017 • 0.199 1.450 __+ 0.324 
0.5~275 0.276 • 0.012 + 0.036 0.831 • 0.036 0.774 • 0.027 1.040 • 0.031 
0.5625 0.468 • 0.017 • 0.047 0.876 • 0.032 0.892 • 0.023 1.209 • 0.031 
0.5975 0.511 • 0.017 • 0.091 0.824 • 0.027 0.909 • 0.022 1.138 • 0.026 
0.6325 0.589 • 0.018 • 0.091 0.849 • 0.027 0.895 __+ 0.020 1.154 • 0.025 
0.6675 0.692 • 0.020 __+ 0.115 0.890 • 0.026 0.882 __+ 0.019 1.153 • 0.024 
0.7025 0.735 • 0.021 • 0.103 0.895 __+ 0.025 0.904 • 0.019 1.097 __+ 0.021 
0.7325 0.778 __+ 0.021 • 0.149 0.870 • 0.023 0.905 • 0.018 1.100 • 0.021 
0.7725 0.963 • 0.024 • 0.101 0.967 __+ 0.024 0.888 • 0.017 1.138 • 0.021 
0.9075 1.144 • 0.027 • 0.093 1.026 • 0.024 0.921 • 0.016 1.145 • 0.020 
0.8425 1.336 • 0.029 __+ 0.031 1.035 • 0.022 0.915 • 0.015 1.084 __+ 0.017 
0.8778 1.594 • 0,031 +__ 0.105 1.036 • 0.020 0.936 • 0.014 1.032 __+ 0.014 
0.9125 2.025 • 0.034 • 0,073 1.095 • 0.018 0.952 • 0.014 0.980__• 0.012 
0.9475 2.441 __+0.036+__0.132 1.105 • 0.016 1.054__+0.012 0.881 __• 0.010 
0.9825 1.439 __+ 0.024 • 0.108 1.012 +__ 0.016 1.764 • 0.020 0.700 • 0.008 
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Table 2. Results of the measurement of the distribution g (cos 0zK ) 
at yc~t0.01. 1 ~t column: cos0vx values at bin center. 2 "  column: 
corrected data at the parton level with statistical and systematic 
errors. The systematic errors include the differences between JET- 
SET and HERWIG Monte Carlo calculations as well as differences 
between analyses using charged tracks plus electromagnetic clusters 

and charged tracks or electromagnetic clusters alone. 3 rd column: 
ratios (data)/(detector level MC) with statistical errors. 4 th column: 
correction factors for fragmentation with statistical errors. 5 th col- 
umn: correction factors (partons)/(detector level MC) with statis- 
tical errors 

cos 0sK Data Ratio Correction factor Correction factor 
(bin center) (parton level) da ta /MC fragmentation partons/MC 

0.05 0.373 i 0.012 __+ 0.034 0.896 + 0.028 0.803 -- 0.020 1.094 i 0.025 
0.15 0.442 • 0.014 i 0.040 0.896 § 0.027 0.773 i 0.018 1.202 i 0.026 
0.25 0.480 i 0.014 i 0.070 0.858 • 0.025 0.807 i 0.018 1.177 i 0.024 
0.35 0.571 __+ 0.015 + 0.098 0.900 • 0.024 0.777 + 0.016 1.157 • 0.022 
0.45 0.686 i 0.017 • 0,067 0.944 • 0.022 0.848 + 0.016 1.106 • 0.019 
0.55 0.825 __+ 0.018 + 0.084 0.957 !0 .020 0.890 + 0,015 1.075 • 0.017 
0.65 1.072 i 0.020 + 0.042 1.000 i 0.019 0.916 + 0.014 1.029 _+ 0.014 
0.75 1.461 i 0.024 • 0.026 1.047 + 0.017 0.940 _4- 0.012 1.037 _+ 0.013 
0.85 2.035 + 0.029 4- 0.089 1.055 +_ 0.015 0.971 4- 0.010 1.062 • 0.011 
0.95 2.054 _+ 0.025 • 0.245 1.044 i 0.012 1.480 i 0.013 0.762 • 0.007 
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Fig. 2. Distributions of the reduced energy x 2 of the second jet at 
Ycut =0.01; i) Experimental distributions corrected to the parton 
level (circles); ii) The predictions of the JETSET parton shower 
model for vector gluons (hatched area); iii) The predictions of the 
JETSET parton shower model for scalar gluons (dashed histo- 
gram); iv) The predictions of the JETSET second order matrix 
element model for vector gluons(solid histogram); v) The predic- 
tions of the first order analytical calculations for vector and scalar 
gluons(solid and dashed carves). The scalar models contain a cor- 
rection term to account for axial vector coupling on the Z ~ peak. 
All curves are normalized with respect to each other so as to have 
the same integral 
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Fig. 3. Distributions of the Ellis-Karliner angle at y~ut-0.01; i) 
Experimental distributions corrected to the parton level (circles); 
ii) The predictions of the JETSET parton shower model for vector 
gluons (hatched area); iii) The predictions of the JETSET parton 
shower model for scalar gluons (dashed histogram); iv) The pre- 
dictions of the JETSET second order matrix element model for 
vector gluons(solid histogram); v) The predictions of the first order 
analytical calculations for vector and scalar gluons(solid and dashed 
curves). The scalar models contain a correction term to account 
for axial vector coupling on the Z ~ peak. All curves are normalized 
with respect to each other so as to have the same integral 

there  is a sy s t ema t i c  t r end  for  the  d a t a  to be m o r e  p e a k e d  
t h a n  the  s i m u l a t i o n  fo r  x 2 a n d  COS0EK close to 1. T h e  
c o r r e c t i o n  fac to r s  o f  (10)  a re  l i s ted in c o l u m n  5 o f  
Tab le s  1 a n d  2. Sys t ema t i c  e r ros  due  to impe r f ec t i ons  in 
the  s i m u l a t i o n  o f  the d e t e c t o r  o r  in the  even t  r econs t ruc -  
t ion  were  e s t i m a t e d  by t a k i n g  the  d i f fe rence  be tween  the 
u n f o l d e d  d i s t r ibu t ions  de r i ved  f r o m  the  t r a c k i n g  c h a m -  
bers  a l o n e  to  t hose  de r i ved  f r o m  the  t r ack ing  c h a m b e r s  

plus  ca lo r ime te r s ,  and  s imi la r ly  for  d i s t r ibu t ions  der ived  
f r o m  e l e c t r o m a g n e t i c  c lus ters  a lone.  T h e  d i f fe rences  a t  
the  p a r t o n  level be tween  the  J E T S E T 7 2  and  a n o t h e r  
s h o w e r  m o d e l ,  H E R W I G 4 3  [19], were  t aken  as an  in- 
d i ca t i on  o f  theore t i ca l  unce r t a in t i e s  a n d  inc luded  in the  
sys temat ic  er ror .  T h e  va r i ous  c o n t r i b u t i o n s  to the  sys- 
t ema t i c  e r ro rs  were  a d d e d  in q u a d r a t u r e .  In  Fig.  2 and  3 
are  s h o w n  the  m e a s u r e d  x 2 and  E l l i s -Ka r l i ne r  d i s t r ibu-  
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tions, f (x2) and g (cos 0EK), unfolded to the parton level 
using JETSET with the parameter  values discussed above. 
The numerical values are given in the second column of  
Tables 1 and 2 respectively. All quoted values are nor- 
malized to the total number of  extracted 3 jet events. In 
column 4 of Tables 1 and 2 the factors 

M,C. [(f(X2)hadron)i] 
~ ~  ; i = b i n  index (12) 

L (J( (X2)parton)i J 

are given (similarly for g (cos 0EK)), which show the im- 
portance of fragmentation corrections (column 2 times 
column 4 yields the measured distributions corrected to 
the hadron level). 

5 Results and discussion 

The essential result of  this work is contained in Figs. 2 
and 3, where data are compared with several theoretical 
curves for both the f (x2) and g (cos 0EK ) distributions: 
the predictions for a scalar gluon* or a vector gluon model 
using the JETSET parton shower, and first order ana- 
lytical calculations based on (1) and (2), for the vector 
and scalar gluon cases. A second order matrix element 
calculation in the vector gluon hypothesis, using the de- 
fault parameters of  the JETSET package, is also shown. 

The spectra are normalized with respect to each other, 
so that this comparison is based on shape only.** 

Both the analytical first order and the shower model 
scalar gluon curves are manifestly incompatible with the 
data, while the curves based on the normal vector gluon 
model fit the data overall quite well. Some differences 
between the various models and the data remain: in the 
case of  the Ellis-Karliner distribution the parton shower 
gives the better description, while the second order matrix 
element calculation gives a better fit to the experimental 
x 2 distribution. It should be pointed out that the defi- 
nition of the quantities x 2 and cos 0EK is not unique: e.g. 
x 2 could have been calculated using x 2 = 2 E 2/Ev~,~ instead 
of (11), and cos 0EK could have been evaluated using (6) 
instead of the boost method employed in this analysis. 
These different methods yield identical predictions in 
leading order for massless partons only, while for massive 
partons or jets the shapes of  the distributions and the 
description of the experimental data are subject to slight 
variations. 

Irrespective of the differences between the various 
models it is clear, however, that the data unambiguously 
favor the vector gluon hypothesis, due to the large dif- 
ferences between the vector and scalar distributions in 
Fig. 2 and 3. 

We verified that increasing Ycut to larger values causes 
the peak observed in the data for x 2 or cos 0EK~ 1 to 
decrease in height, in accordance with the expectations 
from vector models. The vector gluon hypothesis remains 

* The distributions shown were found to be insensitive to the 
choice of the JETSET parameters Cg~gg and c~,~qq 
** The discontinuity in the slope of the analytical x2 distribution 
at x 2 =~ is caused by the ordering of the xi, which limits x I to values 
above 2 

strongly favored even for these larger Ycut values. The 
peak of  the first order vector calculations is at slightly 
higher x 2 and cos 0EK values than the data. A better fit 
is obtained with models which include higher order cor- 
rections as seen from the curves corresponding to the 
parton shower and second order matrix element models. 
The prominence of this pole in the data for x 2 and cos 0EK 
close to one remains a striking feature of  both first and 
higher order models. 

The conclusion, that the observed distributions are 
incompatible with the scalar gluon hypothesis, can also 
be based quantitatively on a fit of  the experimental data 
with a mixture of  scalar and vector gluon shapes. This 
leads to a determination of the possible fraction of events 
with a scalar shape that could be compatible with our 
data. The results again vary for the different theories and 
the two measured data sets. F rom the analysis we present 
here, the largest possible value of the fraction of scalar 
events is obtained using the experimental x 2 distribution 
and as vector gluon theory the second order matrix cal- 
culation. For  the scalar gluon case a second order matrix 
calculation not being available, the parton shower was 
used instead. For  this case one then obtains that the pos- 
sible fraction of events with a scalar spectrum shape is 
lower than 2.4% at the one standard deviation level. 

One final remark:  the measured distributions are very 
convincing visual evidence for a gluon of spin one. They 
have been derived by studying the shape of  three-jet events 
in the hadronic event sample. Actually the fraction of 
those three-jet events in the hadronic data sample, given 
by the ratio R3, is already evidence of the vector nature 
of  the gluon, since both shower models and first order 
calculations predict a reduction of R 3 by an order of  
magnitude in going from a vector to a scalar model (keep- 
ing all else, in particular ~s, constant), again totally in- 
compatible with experiment. 

6 Conclusions 

The general shapes of  the measured distributions of  the 
reduced energy of the second-most energetic jet and of 
the cosine of the Ellis-Karliner angle are reproduced by 
Monte-Carlo shower and second order matrix element 
models, and are also approximately reproduced by first 
order analytical matrix calculations. Due to the low value 
of the jet resolution parameter  Ycut used, they provide 
good evidence for the pole structure of  the three-jet cross- 
section corresponding to a gluon spin equal to I. They 
are in strong disagreement with calculations assuming a 
gluon of spin zero. 

The possible fraction of hypothetical events with a 
scalar shape contained in the data is lower than 2.4% at 
the level of  one standard deviation. 
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d2aS(xI ,COSOEK) 

dXldCOS0EK 

4 -  3x~ + x l ( 3  x 1 - - 4 )  COS20EK X 1 
7.45 - - .  

2 (1 - xl)  (1 -- cos 20EK ) 2 
(17) 

X 1 X 1 
The correction factor in this case is 7.45 ~ , w h e r e  ~- is 

the j acob ian  of  the t ransformat ion  from the x~, x 2 system 
to the Xl, cos 0EK system. 

Appendix 

Equat ions  (1), (2), (7) and  (8) apply to the case where 
the gluon is particle number  three. To include the prob- 
abili ty of the gluon being particle number  one or two, 
one has to sum over all cyclic permuta t ions  of  these for- 
mulae. The resulting expressions are: 

3 3 d2 o'V (x1, x2) X3-~-X2~-X3 
(13) 

d x l d X  2 ( 1 -  xl)  (1 - x 2 ) ( 1 - x 3 ) '  

d 2 o- s (Xl, x2 ) 
A.Cff +(A + B).C, 2 

dx  I dx  2 

~ A + B . - -  
c2 + c?' 

where 

(14) 

A = x2(l-Xl)-~x2(l-x2)-f-x2(l-x3)3 

(1 - x,)  (1 -- x2) (1 --x3) 
(15) 

B =  - 1 0 .  

The terms A and  B are derived from cyclic permuta t ions  
of the vector coupling term in (2), and of the correction 
term - 2  (1 + x3) for the axial coupling (see (3)) respec- 

c,, 
tively. The correction factor B Cff + C c - - ~  is equal to 7.45. 

Here the s tandard  model vector and axial-vector cou- 
plings C 2 and C~ for the u , d , s , c , b  quarks were as- 
sumed and a value of sin 2 0 w of 0.233 was used. 

The equivalent  symmetrized expressions in terms of 
the El l is-Karl iner  angle are: 

d 2 o "v (xl, cos 0EK ) 

d x  I dcos  0EK 

4 X~ +(2-- Xl)3 + 3 xZ(2-- X,)CoS2 OEK 
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