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I. Introduction 

Deep inelastic l ep ton-pro ton  scattering (DIS) 
is tradit ionally understood to proceed via the ex- 
change of  a neutral or charged boson, which inter- 
acts with a quark in the proton. At lowest order  in 
perturbat ion theory, the final state consists of  the 
scattered lepton, the jet  associated with the struck 
quark, and the proton remnant.  Since the proton 
remnant takes very little transverse momentum (Pt), 
the scattered lepton and the quark jet  balance Pt. At 
high momentum transfer squared Q2, two-jet pro- 
duction appears as a higher order correction, and is 
understood as due to gluon radiat ion from the struck 
quark. 

In contrast, at large centre of  mass energy and 
small values of  Q2, hard collisions between quasi- 
real photons and partons from the proton give rise 
to two or more partons in the final state. In these 
photoproduct ion processes, the electron is scattered 
at very small angles, and the pat ton jets balance 
Pt. The photon can interact with a gluon, yield- 
ing a q~ pair (boson-gluon fusion) [1 ], or with a 
quark, generating a qg final state (QCD Compton 
scattering) [2]. These are known as direct photon 
processes. 

If  the exchanged photon is quasi-real, the interac- 
tion is also sensitive to its internal structure. Thus, 
one has to consider the possibility that a parton 
in the photon interacts with a parton in the pro- 
ton. These are known as resolved photon processes 

[31. 
Calculations have been made of  the relative con- 

tr ibutions of  the various par ton-par ton  and pho ton-  
parton processes at HERA energies [4]. They depend 
strongly on the minimum transverse momentum Ptmin 

involved in the two-body scattering process, as well 
as on the structure functions used, in part icular  that 
of  the photon. The cross-section for hard photopro- 
duction is dominated  by the resolved photon pro- 
cesses. 

Evidence for hard photon scattering, in quanti-  
tative agreement with QCD calculations, has been 
found in two-photon physics at e+e  - colliders [5], 
as well as in fixed target experiments [6-8] ,  but the 
restricted phase space available at the energies of  
these experiments has not allowed the observation of  
two-jet production. Here we present evidence both 

for jets in hard photon-pro ton  scattering and for re- 
solved photon processes, using the ZEUS detector at 
HERA*I . 

2. HERA machine conditions 

Currently at HERA, bunches of  electrons with en- 
ergy E~ = 26.6 GeV collide with bunches of  pro- 
tons of  energy 820 GeV with a t ime between bunch 
crossings of  96 ns. HERA is designed to run with 210 
bunches in each of  the electron and proton rings. For 
the data taking period described in this paper only ten 
consecutive bunches (0 -9)  were filled for each beam. 
In addi t ion electron bunch number  19 was filled for 
measuring electron induced background. For approx- 
imately half  of  the runs, the electron bunch number 
9 was left empty, in order to facilitate proton back- 
ground studies. The electron and proton beam cur- 
rents were typically 1-2 mA. The length of  the inter- 
action region, determined by the proton bunch length, 
was about 40 cm. 

3. Experimental setup 

ZEUS is a mult ipurpose magnetic detector [ 10,11 ], 
as shown in fig. 1. Here we give a brief  description 
concentrating on those parts of  the detector relevant 
for the present analysis. 

Charged particles are tracked by the inner tracking 
detectors. These surround the beam pipe and are op- 
erated in a magnetic field of  1.43 T provided by a thin 
superconducting coil. The central tracking detector 
consists of  72 cylindrical drift chamber layers, organ- 
ised into 9 "superlayers'" [12 ]. At present the tracks 
are reconstructed using a subset of  layers equipped 
with z-by-t iming electronics #2 which compares the 
arrival t imes at both ends of  the chamber. The reso- 
lution is 4.0 cm in z and about 1 mm in the xy  plane. 

The solenoid is surrounded by a high resolu- 
tion calorimeter  divided into three sections, for- 

nl Preliminary results on hard photoproduction obtained 
with the HI detector were reported in ref. [9]. 

~2 The ZEUS coordinate system is defined as right handed 
with the z axis pointing in the proton beam direction, 
hereafter referred to as forwarcl, and the x axis pointing 
to the centre of HERA. 
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-2 

5m 

Fig. I. Side view 

ward (FCAL), barrel (BCAL) and rear (RCAL). 
The calorimeter is built with alternating layers of 
depleted uranium and scintillator with one radia- 
tion length sampling. Longitudinally the calorime- 
ter is segmented into electromagnetic (EMC) and 
hadronic (HAC) sections. The calorimeter is read 
out via wavelength shifter bars and photomultipliers. 
The transverse cell sizes are about 5 cm × 20 cm for 
the FCAL and BCAL EMC, 10 cm x 20 cm for the 
RCAL EMC, 20 cm x 20 cm for the FCAL and RCAL 
HAC, and up to 25 cm × 35 cm for the BCAL HAC. 
Under test beam conditions the energy resolution 
for electrons was found to be a ( E ) / E  = 0.18/v/E: 
(E in GeV) and for hadrons a ( E ) / E  = 0.35/~/E 
[13,14]. The time resolution of a calorimeter cell is 
1.5/v/E ~ 0.5 ns [13,15]. 

In order to discriminate against the very high inter- 
action rate produced upstream of the detector by in- 
teractions of the protons with residual gas in the vac- 
uum pipe (beam-gas),  two layers of scintillator coun- 
ters are installed on either side of an 87 cm thick iron 
wall (VETOWALL). In addition a scintillator lead 
sandwich counter (C5) partially surrounds the beam 
pipe just upstream of the rear calorimeter. 

0 -Sm 

of the ZEUS detector. 

t I t 

To measure the luminosity as well as Io tag very 
small Q2 processes, we use two lead scintillator elec- 
tromagnetic calorimeters [ 16]. Hard bremsstrahlung 
photons emerging from the electron-proton interac- 
tion point (IP) at angles 07, -< 0.5 mrad with respect 
to the electron beam axis hit the photon calorimeter 
at 107 m from the IP. Electrons emitted from the IP 
at scattering angles 0,', ~< 6 mrad and with energies 
0.2Ee < /:e < 0.9Ee are deflected by beam magnets 
and hit the electron calorimeter placed 34.7 m from 
the IP. 

3. 1. The trigger and data acquisition system 

ZEUS has a three-stage trigger. The calorimeter first 
level trigger is critical for this analysis. It uses cells 
grouped into trigger towers, each approximately 20 
cm x 40 cm in cross-section. For this data a first level 
trigger was issued if the energy deposited in a trigger 
tower in any EMC section or in the HAC section of 
FCAL exceeded a certain threshold. In the FCAL, the 
EMC threshold was set to 50 GeV for the innermost 
ring of trigger towers (approximately 20 cm wide) 
around the beam pipe, 20 GeV for the second ring 
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and 10 GeV elsewhere. The FCAL HAC thresholds 
were 70. 25 and 10 GeV respectively. For the BCAL 
EMC the threshold was set to 2.5 GeV. For the RCAL 
EMC, the setting was 10 GeV for the innermost ring 
and 2.5 GeV elsewhere. Events with a signal in the C5 
counter in time with the proton beam were rejected. 

Calorimeter signal times, tF and tR, were defined 
from groups of FCAL and RCAL cells close to the 
beam pipe. The time offsets were adjusted so that tv 
and tR were approximately zero. Events were rejected 
in the third level trigger if the following conditions 
were satisfied: 
- at least two photomultiplier channels in FCAL each 
registered more than 1 GeV, 
- at least two photomultiplier channels in RCAL each 
registered more than I GeV, 
- the signal times were consistent with an interaction 
upstream of RCAL, i.e., tF "~ 0 ns and tR "- - 11 ns. 

4 .  D a t a  s e l e c t i o n  c r i t e r i a  

The triggered events were passed through a filter 
program requiring 
- no veto signal from the VETOWALL counter, 
- an EMC trigger signal from the RCAL or BCAL, 
- the average time measured in both FCAL and 
RCAL, when available, as well as their difference, to 
be within ±6 ns, 
- e i t h e r  more than 10 GeV deposited in the FCAL 
and more than 2.5 GeV deposited in RCAL (condi- 
tion 1 ), 
o r  more than 20 GeV total energy and 10 GeV trans- 
verse energy deposited in the whole calorimeter (con- 
dition 2). 

This filter reduced approximately one million trig- 
gers to 7087 candidate events. A visual scan of a sub- 
sample of these events revealed that beam-gas trig- 
gers still dominated. This could also be seen from 
the z distribution of the reconstructed vertex, which 
was broad and not centred at zero. In a second filter- 
ing, cosmic rays and beam halo muons were rejected 
with a suitable algorithm and, in order to reduce the 
beam-gas contamination further, a more refined tim- 
ing analysis was performed by lowering the threshold 
for measuring the time to 300 MeV per cell. Further- 
more, for events satisfying condition 2 we rcquired 

that Eto~ - p_- /> 12 GeV"3. This cut discriminates 
against beam-gas events where almost all of the en- 
ergy is deposited near the beam pipe in the FCAL. 

To ensure that the sample did not contain neutral 
current ),4 DIS events, we searched for scattered elec- 

tron candidates by using the pattern of energy distri- 
bution in the calorimeter. The efficiency for identify- 
ing isolated electrons was greater than 99% for elec- 
tron energies greater than 4 GeV. If an electron can- 
didate was found in the calorimeter, y was measured 
using the relation 

E,: l + cos0,: (1) 
Ye = 1 E,, 2 

where Ee (E,~) denotes the incident (scattered) 
electron energy. This relation is valid for colliding 
beams in the zero mass approximation. Events with 
ye ~< 0.7 were rejected. This cut was chosen after 
detailed Monte Carlo studies for both DIS generated 
events and photoproduction events. It removed ap- 
proximately 500 events due to DIS, while keeping 
events where the observed electromagnetic energy 
deposition is due to photons mainly coming from 
decays of photoproduced 7r ° and q mesons. Since this 
procedure effectively removes scattered electrons in 
the RCAL, the resulting sample is constrained to Q2 
values below 4 GeV 2. We estimate the remaining 

contaminat ion due to DIS to be below 2%. After 
these cuts 576 events remained. 

The events were examined on visual displays by 
three independent groups of physicists, revealing that 
the sample was free from cosmic rays and halo muons. 
The beam-gas contamination was estimated to be 
at most 3%. This was confirmed by an independent 
method not based on visual inspection. The tracking 
information was used to reconstruct a vertex in z. For 
the 92% of the events with a reconstructed vertex, the 
distribution is centred at - 2  cm with a width of 24 
cm. This is in agreement with MC studies for the ef- 
ficiency of vertex reconstruction and with the beam 
bunch lengths as measured by the C5 counter. More- 
over, out of 372 events in those runs with a missing 
electron bunch, we find the distribution of the bunch 

#3 We define Etot as the total energy deposited in the 
calorimeter and P z  as ~ E, cos 0,, the sum running over 
all the calorimeter cells. 

~4 The number of charged current events expected with our 
integrated luminosity is negligible. 
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crossing number  to be constant for bunch crossing 
numbers 0-8  while there was only one event with 
bunch crossing number  9, corresponding to the pro- 
ton unpaired bunch. 

5. The Monte Carlo simulation 

In order  to model the expected hadronic final 
states, we have used the generators PYTHIA [17] 
and HERWIG [18]. The photon structure function 
was parametr ized according to the prescription of  
Drees and Grassie [19], while for the proton struc- 
ture function Morf in-Tung set BI [20] was used. Ex- 
tensive Monte Carlo simulations were done varying 
the Ptmin of  the outgoing partons in the hard two-body 
scattering between 1.0 and 5 GeV. 

Although the cross-section estimates are not re- 
liable for Ptmin ~< 1 GeV, where the validi ty of  
perturbation theory is doubtful, it is expected that 
these models will provide a reasonable description 
of  the hadronic final state at high transverse energy 
(ET) values. These Monte Carlo generators used the 
Weizs~icker-Williams approximat ion at the lepton 
vertex which was constrained to Q2 = 0. This ap- 
proximation has been est imated to be good to --, 10% 
under the condit ions of  the present measurement  
[21 ]. The generators take into account the effect of  
initial state bremsstrahlung [22]. PYTHIA allows the 
study of  diffractive processes as well as soft ep inter- 
actions using a two-string fragmentation picture. The 
diffractive reactions were generated according to the 
behaviour measured in low energy photoproduct ion 
[23]. 

In order  to estimate the fraction of  events where the 
scattered electron is tagged in the luminosity monitor,  
we used a modified simulation, generating the scat- 
tered electron according to the ALLM [24] prescrip- 
tion, which incorporates a continuous parametr iza-  
tion from the DIS region down to Q 2 = 0 .  

6. Results 

energy distr ibution cannot be explained just  by soft 
photoproduct ion processes, but rather requires hard 
two-body scattering. We then calculate the differential 
and total cross-sections. We demonstrate  that a subset 
of  the data shows clear evidence for two-jet structure 
back-to-back in the transverse plane. Finally we show 
that a subset of  the two-jet events have energy in the 
rear (electron) direction, and thus can be interpreted 
as resolved photon interactions. 

6.1. Kinematic region o f  accepted events 

We can confirm that the data originate from the 
photoproduct ion (Q2 ,,~ 0) regime by examining the 
subset of  events where the scattered electron is ob- 
served in the electron calorimeter  used to measure the 
luminosity. In fact, 96 of  the 576 events are tagged in 
the luminosity moni tor  with an electron in the energy 
interval 5 ~< Ee ~ 22 GeV (Q2 ~ 0.02), in agree- 
ment with Monte Carlo expectations which estimate 
this fraction to be 20%. 

From these tagged events the 7P centre of  mass en- 
ergy W was calculated both from the electron energy 
and from the hadronic system. The results are shown 
in fig. 2a. The W values calculated from the hadronic 
system are well correlated with those calculated from 
the tagged electron, in agreement with detector sim- 
ulations. Fig. 2b shows the distr ibution in W for the 
complete sample of  events (solid histogram) as ~'eil 
as that corresponding to events with an electron ob- 
served in the luminosity moni tor  (dashed histogram). 
The latter is narrower, reflecting the restricted electron 
energy acceptance in the luminosity monitor.  There is 
good agreement with Monte Carlo expectations, HER- 
WIG with Ptmin = 1.5 GeV, as shown by the dotted 
curve in fig. 2b. In contrast, the W distr ibution for 
DIS events has a completely different shape, peaking 
sharply at small W [25]. Thus we conclude that the 
full sample of  events is due to quasi-real ~,p collisions 
at a centre of  mass energy between 100 GeV and the 
kinematic limit of  295 GeV, the mean value being 
close to 200 GeV. The corresponding acceptance in 
y = (Ee - E~)/Ee is in the range 0.1 to 1. 

We now turn to the characteristics of  the event sam- 
ple selected by the above cuts. First we show that the 
data are consistent with emanating from photopro- 
duction processes. Then we show that the transverse 

6.2. General characteristics o f  the event sample 

Figs. 2c and 2d show the total transverse energy and 
the missing transverse momentum,/~t.  The overall Pt 
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Fig. 2. (a) Corre lat ion between the yp centre o f  mass en- 
ergy (W) computed from the hadronic system and from 
the scattered electron for those events having an electron in 
the luminosity monitor. (b) The distribution in W calcu- 
lated from the hadronic system for all events (solid line his- 
togram) and for events with an electron in the luminosity 
monitor (dashed line histogram)• The latter spans a smaller 
range because of the restricted energy range of the detected 
electrons. The curve shows the Monte Carlo expectations. 
(c) Total transverse energy distribution for all events (solid 
line histogram), for events with an electron tag in the lu- 
minosity monitor (dashed line histogram) and for events 
with two-jet structure (black area). The dashed curve shows 
the expectations from the HERWlG Monte Carlo genera- 
tor including direct and resolved photon contributions with 
Ptmin = 1.5 GeV. The dash-dotted curve shows the trans- 
verse energy distribution for soft 7P interactions. (d) Miss- 
ing transverse momentum distribution for all events (solid 
line) and for events with an electron in the luminosity mon- 
itor (dashed). The dotted curve shows the Monte Carlo ex- 
pectations. 

is well balanced, as expected for photoproduction in- 
teractions, the average (~t) being approximately 1.5 
GeV. The ET distribution exhibits, by contrast, a tail 
that extends beyond 20 GeV. This is greatly in excess 
of what is expected for DIS, where the small trans- 
verse momentum carried by the scattered electron is 
balanced by a single jet. It is also much larger than 
that expected from soft yp interactions, the tail of 
which extends to a maximum of about 10 GeV in ET, 
as shown by the dash-dotted curve in fig 2c. The nat- 
ural explanation for this is hard scattering between 

the photon or its constituents, .and the proton. The 
inclusion of such processes in Monte Carlo genera- 
tors such as PYTHIA and HERWIG reproduces the 
general features of the data, in particular the high ET 
tail, as shown by the dotted curve in fig. 2c, which 
represents HERWIG with Ptmin = 1.5 GeV. We note 
that the events with an electron tag in the luminos- 
ity monitor, shown as the dashed histograms in figs. 
2b-2d, exhibit the same behaviour as that character- 
istic of the total data sample, in particular the high 
ET tail. 

6.3. (.'ross section calculation 

In order to calculate the cross-section for the sam- 
ple, the trigger and detector acceptances were esti- 
mated using Monte Carlo techniques. The overall ac- 
ceptance varies between 4% for PYTHIA and 5% for 
HERWIG, mainly determined by the trigger. With in- 
creasing ET the acceptance grows and becomes less 
model dependent, reaching 50% for ET values of 40 
GeV [26 ]. We have restricted ourselves to the region 
ET >/ 10 GeV because this region is free from con- 
tamination by soft processes, and Monte Carlo calcu- 
lations that include hard two-body scattering describe 
the ET spectrum, as seen in fig. 2c. We estimate a 20% 
systematic error in the acceptance calculation. The in- 
tegrated luminosity is 2.2 nb -  J, with a systematic un- 
certainty of approximately 20%. The total ep cross- 
section for a transverse energy larger than a given Er  
value is shown in fig. 3a. The cross-section exhibits a 
steep dependence on ET. 

There are 391 events with ET larger than 10 GeV 
yielding an electroproduction cross-section of 2.4 :~ 
0.1 + 0.7/~b. Radiative corrections in our kinematic 
region, where W is larger than 100 GeV, are expected 
to be negligible [ 11 ]. The total ep cross-section for 7P 
interactions at HERA has been measured to be 154 + 
16 + 32 /lb [ 1 I 1, which translates to approximately 
11 #b for electroproduction in the accepted kinematic 
region Q2 ~< 4 GeV 2, y >/ 0.1 [27 ]. We conclude that 

approximately 20% of the total cross-section within 
this range can be ascribed to hard photoproduction 
as defined above. In fig. 3a we show the cross-section 
predicted by HERW1G with a Ptmin value of 1,5 GeV. 
The agrcement is fairly good. In contrast, calculations 
with only BGF and QCD Compton processes, i.e., 
neglecting the resolved photon contribution, give an 
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Fig. 3. (a) The total ep cross-section measured for values 
larger than a given transverse energy E °. The curve is the 
predicted cross-section in HERWIG with Ptmin = 1.5 GeV, 
including both direct and resolved photon contributions• (b) 
Transverse momentum distribution of the identified jets• 
(c) Distribution of the difference in azimuth between the 
jets for those events belonging to the two-jet category. The 
dotted curve represents the Monte Carlo expectations. (d) 
Correlation between energy deposited in the RCAL versus 
the minimum pseudorapidity of the two jets in the two-jet 
sample. The arrow marks the RCAL-BCAL boundary. 

e lectroproduction cross-section which  is at least an 
order o f  magni tude  smaller• 

6 . 4 .  E v i d e n c e / ' o r  j e t  s t r u c t u r e  

The observation o f  a large Ex tail in the data as well 
as the measurement  o f  the total cross-section lend sup- 
port to the hypothes is  that our high Ex data includes  
a large c o m p o n e n t  o f  hard coll is ions.  If  this is indeed 
the case there should be a two-jet structure in a sub- 
set o f  the data. We searched for such final states us- 
ing a jet f inding algorithm in pseudorapidi ty  (1"/) - a z -  
imuth  (oh) space based on the S n o w m a s s  convent ion  
[ 2 8 ] .  The cone radius R = (A~b 2 + A q 2 )  U2 in the al- 

gorithm was set to l unit and cells with EMC ( H A C )  
transverse energy be low 50 MeV ( 100 M e V )  were ex- 
cluded.  In order to ensure that the results are not bi- 
ased by fragments from the proton remnant,  whose  
fragmentat ion properties at these energies are not well 
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Fig. 4. (a) Transverse energy in q-4~ space (r/ stands for 
pseudorapidity and 0 for azimuth angle) for an event with 
a two-jet structure. (b) Transverse energy in r/-ff space for 
an event showing a two-jet structure plus additional activity 
in the incident electron direction associated with the photon 
remnant. 

determined,  we excluded cells with a polar angle less 
than 10 °. Preclusters were formed around cells with 
ET larger than 300 MeV, and the final clusters were 
called jets i f  their transverse m o m e n t u m  was larger 
than 4 G e V  and r/ ~< 2, i.e., polar angles larger than 
15 ° . 

It is found that 7% (0.8%) o f  the events  are o f  two- 
jet (three-jet) type, in good agreement with Monte  
Carlo calculations predicting 8% (0.7%).  Fig. 4a 
shows the transverse energy distribution in the r/, 
plane o f  one o f  the two-jet events.  T w o  well co l l imated 
hadron jets with energies greater than 5 GeV are 
seen, their separation in 4~ being close to 180 °. In fig. 
3b we show the Pt distribution o f  all o f  the observed 
jets and in fig. 3e the difference in az imuth  between 
the jets in the two-jet sample.  A peak around 180 ° is 
observed,  showing  ev idence  that the two-jet sample  
is d o m i n a t e d  by back to back jets in the transverse 
plane• Furthermore,  7 o f  the 41 two-jet events  have 
an electron in the luminos i ty  monitor ,  in agreement 
with the Monte  Carlo expectation o f  8 events.  

Although the l imi ted  statistics preclude an analy- 
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sis of the jet activity as a function of the total trans- 
xerse energy, be  sho t  m fig. 2c (dashed area) the 
t ransver~ energy d~str~but~on for e~ents v, tth a tv, o- 
jet ~tructurc. Thts clcarl) sho~s that these e~ents oc- 

cur at the h~gher ~alues of El,  as c,~pectcd, and as ~s 

obsened  in hadron-hadron eoth~tons 12'¢,.~0] 

pie in which the scattered electron is detected in the 
luminosity monitor, the parton fractional momenta 
can be measured using onl) the jet energies and the 
tagged electron cnerg~ In these e,,ents the observed 
R('..%L energ~ ts tn accord v, tth the prediction from 
the' rr~on~tt'ut-~ed p a r ~  kt~emivt~t:s. 

6.5. Evidence for remnants of the resoh'ed photon 

As discussed above, a major fraction of the high 
ET events is expected to come from resolved photon 
interactions. Long range forces during the hadroniza- 
tion should cause the fragments of the photon rem- 
nant to leave the beam pipe and make their observa- 
tion possible [31 ]. 

Fig. 3d shows the energy deposited in RCAL versus 
the min imum pseudorapidity of either of the two jets 
for our two-jet sample. If direct photon interactions 
were the sole origin of these events, substantial en- 
ergy in RCAL would be expected for events with the 
min imum jet pseudorapidity (r/re,n) < -1  , falling to 
essentially zero as the jets become more distant from 
the RCAL region (~/m,n > 0). This trend is indeed ob- 
served in fig. 3d. However, in addition the data show 
a sizeable energy detected in RCAL 4 to 8 GeV, even 
when both jets are far from the RCAL itself, the near- 
est jet being as much as three units of rapidity away. 
These events are therefore interpreted as originating 
from the resolved photon process, where the two par- 
ton jets go forward and the photon remnant  go ap- 
proximately in the direction of the incident electron, 
which is close to the direction of the virtual photon. 

By requiring r/mi. > 0 and RCAL energy larger than 
4 GeV for the two-jet sample, we select I 1 resolved 
photon candidates, in agreement with Monte Carlo 
calculations which predict 16 events in this region. 
One of the resolved photon candidates is shown in fig. 
4b. There is substantial energy in the RCAL with a 
large pseudorapidity gap between it and the two jets. 
For the resolved photon events we can estimate the 
fractional momenta of the interacting partons by sev- 
eral methods, for example using the invariant masses 
of both the jet- jet  system and the j e t - j e t - remnant  
system, as described in ref. 131 ]. Wc have checked 
by Monte Carlo methods that, even with the low en- 
ergy jets characteristic of this analysis, there is satis- 
factory accuracy in the reconstruction of the parton 
fractional momenta. For the four events in the sam- 

7. Summary and conclusions 

We have isolated a sample of photoproduction 
events at HERA that are well balanced in P,. The 
distribution in transverse energy exhibits a tail ex- 
tending up to 40 GeV, which cannot be explained 
either by soft processes or by a current jet balancing 
the Pt of a scattered electron. Clear back-to-back two- 
jet events arc found in a region of phase space well 
separated from the proton fragments. 

The rates and cross-section are in agreement with 
Monte Carlo models containing resolved photon pro- 
ccsscs. A subset of the events with two-jet structure 
exhibits energy in the rear direction consistent with 
expectations for the fragments of the photon. These 
properties arc also shown by that subset of the data in 
which the scattered electron is tagged at small angles 
in the luminosity detector. These effects are evidence 
for hard two-body scattering between partons in the 
photon and the proton. 
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