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Abstract. Quark and gluon jets with equal energies are 
identified in three-jet hadronic Z ~ events, using recon- 
structed secondary vertices from heavy quark decay in 
conjunction with energy ordering of the jets to anti-tag 
the gluon jets. Selection of  jets from a symmetric event 
topology allows their properties to be compared in a sim- 
ple and direct manner. The jets under study have an en- 
ergy of about 24 GeV. It is observed that gluon jets have 
a larger angular width than quark jets and yield a softer 
particle energy spectrum. Correspondingly, the mean par- 
ticle multiplicity is found to be larger for gluon than for 
quark jets. Correcting the distributions for residual mis- 
identification of  the quark and gluon jets, the ratio of  
mean particle multiplicty of gluon relative to quark jets 
is measured to be 

(n )g l  . . . .  1.27 • 0.04 (stat.) • 0.06 (syst.), 
(n)quark 
where the jets are defined using the kz  jet finder. The 
numerical value of this ratio is found to be sensitive to 
the choice of  the jet algorithm. The experimental results 
are compared to Monte Carlo calculations which incor- 
porate perturbative QCD along with different assump- 
tions about the hadronization process. 

1 Introduction 

The question of  whether jets initiated by a highly virtual 
quark or gluon possess different properties has been the 
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object of considerable theoretical [1-4] and experimental 
[5-6] study. In quantum chromodynamics (QCD), the 
gluon is associated with a color charge C A = 3 and the 
quark with a charge CF= 4/3 and one naively expects a 
ratio of  (C A/CF) = 9/4  for the multiplicity of  soft gluons 
produced from the two jet types [ 1 ]. For  equal quark and 
gluon jet energies, the larger multiplicity of the gluon jet 
means that its particle energy spectrum is softer. This in 
turn implies that the angles of particles relative to the jet 
axis should be larger in gluon than in quark jets of equal 
energy, because the mean transverse energy value of the 
particles is expected to be about the same: thus that gluon 
jets are spread over a larger angular interval than quark 
jets and in this sense are broader. These predictions are 
valid at leading order and assume that the jet energies 
are large enough that the numerical results become in- 
dependent of  the jet energy. A number of  theoretical stud- 
ies suggests, however, that large non-leading and finite 
energy corrections significantly reduce the magnitude of  
the differences expected between quark and gluon jets 
[3, 4]. Furthermore, to relate the predictions to the had- 
ron-level measurements, it is necessary to employ a had- 
ronization model or else to invoke an ansatz like local 
parton-hadron duality [7]. The situation has also been 
confused experimentally because of the use of  quark and 
gluon jets with different energies and because the quark 
jets have sometimes been taken from two-jet events in 
e+e - annihilations while the gluon jets are taken from 
three-jet events, whereas model calculations imply that 
the jet energy and environment substantially influence 
quark and gluon jet properties. As a consequence, the 
experimental results have sometimes been contradictory 
and inconclusive, being dependent on QCD Monte Car- 
los for interpretation. It has therefore proven difficult to 
establish whether jets of hadrons initiated by quarks and 
gluons possess different characteristics and the level to 
which such differences are expected. 



389 

In a previous publication [6], we addressed the ques- 
tion of quark and gluon jet differences from an experi- 
mental standpoint, using the jet identification technique 
which we introduced in [8]. The purpose of this analysis 
was to investigate whether differences between quark and 
gluon jets were observable from our data. Symmetric 
three-jet events were employed, in which the angles be- 
tween the highest energy jet and each of the two lower 
energy jets were the same. For  the configuration chosen, 
the highest energy jet was known to be a quark or an 
antiquark jet with high probability, because of the brems- 
strahlung nature of  gluon radiation. A high energy lep- 
ton, assumed to originate from charm or bot tom quark 
semi-leptonic decay, was required to be present in one of 
the two lower energy jets. Since heavy quarks in e+e - 
annihilation are produced predominantly at the electro- 
weak vertex, the observation of such a lepton identified 
the jet as being a quark jet, with high probability. The 
lower energy jet without the lepton was thus "anti-tagged" 
as the gluon jet. To obtain an unbiased sample of quark 
jets with which to compare these gluon jets, the same 
symmetric event sample was employed, but without the 
lepton tag requirement. In this case, the two lower energy 
jets were known to be an equal mixture of  quark and 
gluon jets and were presumed to have normal properties: 
comparing these jets to the anti-tagged gluon jets from 
the tagged events allowed a comparison of quark and 
gluon jet properties because the latter sample had a much 
larger gluon jet component. Since the quark and gluon 
jets being compared had the same energy, event environ- 
ment and selection criteria, they could be compared di- 
rectly, with no need for Monte Carlo calculations to es- 
tablish the results. It was observed that gluon jets were 
broader and yielded a softer particle energy spectrum 
than quark jets, in qualitative agreement with the expec- 
tations of perturbative QCD. Gluon jets were observed 
to have a slightly larger mean particle multiplicity than 
quark jets. 

In this publication, we update our previous study us- 
ing a data sample which is about seven times larger. The 
data were collected using the OPAL detector at the e + e -  
collider LEP at CERN. We introduce a new technique 
to anti-tag the gluon jet, based on reconstructed second- 
ary vertices to identify bottom quark jets instead of high 
energy leptons. Because of their relatively long lifetime 
(2"" 1012 S), bottom hadrons travel a considerable dis- 
tance from their point of creation before they decay. They 
thus lead to "secondary vertices" displaced from the pri- 
mary e+e - collision point, from which the bottom 
hadron decay products emanate. Reconstruction of  
secondary vertices in jets therefore permits bottom quark 
jets to be identified and the methods we developed in our 
earlier study of symmetric three jet events to be applied. 
Furthermore, the tagged event sample from secondary 
vertices has little overlap with the lepton tagged one and 
so provides a consistency check on our previous results. 
In our previous study, the quark and gluon jets were not 
corrected for residual quark and gluon jet misidentifi- 
cation. Here, we evaluate the purity of the identified quark 
and gluon jets using Monte Carlo. After presenting the 
data directly in a model independent manner, we correct 

the measurements for the residual quark-gluon jet im- 
purities. The results are then compared to QCD models 
containing different assumptions about the perturbative 
phase and the hadronization process. 

2 Detector and data sample 

The OPAL detector has been described in detail elsewhere 
[9]. Only a brief account of some relevant features for 
the present analysis and of the selection of  hadronic Z ~ 
decays is given here. 

The tracking of charged particles is performed with a 
central detector, which contains three systems of  drift 
chambers: a precision inner vertex chamber, a large 
volume jet chamber and specialized chambers at the outer 
radius of the jet chamber which improve the measure- 
ments in the z-direction.* The OPAL central detector also 
includes a silicion microvertex detector which is discussed 
in the next paragraph. The tracking chambers are en- 
closed by a solenoidal magnet coil providing an axial field 
of approximately 0.435 T. The most important tracking 
detector for the momentum measurement is the jet cham- 
ber, which provides up to 159 space-points per track and 
close to 100% track finding efficiency for charged tracks 
in the region I cos 01 < 0.92. The momentum resolution 
for charged tracks is Ap/p~5% for p,-~45 GeV/c.  The 
average angular resolution is about 0.1 mrad in ~b and 
better than 10 mrad in 0. 

Of particular importance to this analysis is the silicon 
microvertex detector [10], installed as a part of  OPAL 
during the 1990-1991 LEP shutdown. This device con- 
sists of two layers of silicon microstrip detectors posi- 
tioned close to the e + e -  collision point, one at a radius 
of 6.1 cm with an angular coverage of ]cos 01 < 0.83 and 
one at a radius of 7.5cm with a coverage of  
]cos 01 < 0.77. We presently achieve a positional reso- 
lution of about 10 v.m with this detector and an efficiency 
of  about 95% for finding at least one silicon detector hit 
on a track, for tracks which are reconstructed in multi- 
hadronic events in the other tracking chambers and which 
pass through the active silicon region. 

Electromagnetic energy is measured by a detector 
composed of lead-glass blocks located outside the magnet 
coil, with a barrel ( [cos0]  < 0.82) and two endcap 
(0.81 < [cos 01 < 0.98) parts. Each block subtends ap- 
proximately 40 x 40 mrad 2. The depth of material to the 
back of  the calorimeter is about 25 radiation lengths. The 
basic calorimeter entities used are clusters of energy, i.e. 
groups of contiguous blocks containing a non-negligible 
energy deposition from the traversing particles. To 
minimize double counting of energy, clusters are accepted 
only if they are unassociated with a charged track. A 
cluster is associated with a charged track if the extra- 
polated track coordinates at the entrance of the calorim- 
eter match to better than 80 mrad in q5 and 150 mrad in 
0, if the cluster is in the barrel, or 50 mrad in both ~b and 
0, if it is in the endcap. 

* Our coordinate system is defined so that z is the coordinate 
parallel to the e + and e- beam axis, r is the coordinate normal to 
the beam axis, ~b is the azimuthal angle and 0 is the polar angle 
with respect to z 
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For  muon identification, OPAL is instrumented with 
a hadron calorimeter, located outside the electromagnetic 
one, constructed from alternating layers of  iron slabs and 
limited streamer tubes. The depth of the material is 
typically eight or more interaction lengths. Outside the 
hadron calorimeter is the muon chamber system, com- 
prised of  four layers of  drift chambers for I cos 0[ < 0.68 
and four layers of  limited streamer tubes for 
0.60 < [cos 01 < 0.98. The typical positional resolution 
of the muon chambers is about 2 mm. 

The OPAL trigger system is described in [ 11 ] and the 
online selection procedures for hadronic events in [12]. 
Within the geometrical region used for the present study, 
the efficiency of  this selection is greater than 99.6%. 
Tracks and clusters used in this analysis were subjected 
to quality cuts. Charged tracks were required to have at 
least 20 measured points in the jet chamber, to have a 
transverse momentum in the r -~b  plane greater than 
0.15 GeV/c,  to lie in the region Icosol  <0 .94  and to 
point to the origin to within 5 cm in the r -~b  plane. In 
addition, they were required to yield a )~2 per degree-of- 
freedom of less than 100 for the track fit in the r -~b  
plane. Besides the requirement that they be unassociated 
with charged tracks, clusters were required to have an 
energy greater than 0.1 GeV if they were in the barrel 
part of  the detector and to be spread over at least two 
lead glass blocks and have an energy greater than 0.3 GeV 
if they were in the endcap part. For  the present analysis, 
particles are defined to be one of these accepted charged 
tracks or unassociated clusters. 

Additional events cuts were applied to eliminate re- 
sidual background and to obtain a data sample of  good 
quality. The thrust axis of the event was calculated using 
the particles, and was required to satisfy I cos  (0thrust)[ 
< 0.9, to eliminate events where a significant number of 

particles were lost or badly measured near the beam di- 
rection. The number of  accepted charged tracks was re- 
quired to be at least five to eliminate r + r -  events. We 
required the calorimeters and tracking chambers to be 
fully operational and restricted the analysis to our 1991 
and 1992 data, since these were collected after the silicon 
microvertex system had been installed. Only those events 
collected within 100 MeV of the Z ~ peak were used. The 
total integrated luminosity employed was about 33 pb - 1, 
corresponding to an initial sample of 1 003 140 hadronic 
Z ~ decays. 

3 Three-jet event selection and jet tagging 

Three-jet events were selected by applying the k_l_, or 
"Durham",  jet finder [13] to the accepted particles. We 
choose this jet finder because it is well defined in pertur- 
bation theory, allowing calculations to incorporate lead- 
ing terms to all orders. It is therefore expected to facilitate 
comparison between theory and the results presented in 
this publication. Briefly, pairs of resolvable jets within an 
event were required to satisfy 

2. min (E?, E~)- (1 -- cos 0ij ) 
YiJ=-- Eves. > Ycut, (1) 

where E i and Ej. are the energies of  two jets or particles 
i and j and 0,.j is the angle between them. The visible 
energy of the event, Evis. , w a s  obtained by summing the 
energies of the particles. In this analysis, the energy values 
of charged tracks are calculated by assigning them the 
pion mass, while clusters are assumed to be photons. The 
jet directions are equal to the vector sum of the constit- 
uent particle three-momenta. Jets or particles with 
Yij ~Ycut were combined into a single jet [13]. The value 
Ycut= 0.02 was chosen because this yields a maximum 
number of three-jet events for the angular configuration 
which we study. Each jet was required to contain at least 
two particles, lie in the polar angle region l cos 01 < 0.9 
and have a visible energy, E jet larger than 5 GeV, where vis., 
E~ t is defined by summing the energies of the particles 
assigned to the jets. The sum of the angles between the 
three jets was required to exceed 358 ~ to eliminate non- 
planar events. The jets were assigned a calculated energy 
using the angles between them, assuming massless kine- 
matics and perfect event reconstruction. Symmetric three- 
jet events were selected by projecting the jets into the 
three-jet event plane and requiring that the angle between 
the highest energy jet and the two others be in the range 
150 • 10 ~ The event plane is defined by the plane normal 
to the smallest sphericity [ 14] eigenvector. In total, 22 637 
symmetric three-jet events were obtained. Assuming the 
flavor independence of the strong coupling constant [ 15], 
it may be presumed that these events approximately rep- 
resent a normal mixture of quark flavors and decays at 
the Z ~ peak. We refer to them in the following as the 
normal-mixture sample. The mean calculated jet energies, 
the mean visible jet energies and the mean angles between 
the jets are summarized in Table 1 for these data. 

Finite quark mass values lead to a reduction in the 
phase space available for gluon emission in heavy quark 
events compared to light quark ones. The relative pop- 
ulation of bottom quark events is, as a consequence, ex- 
pected to be a few percent smaller in the symmetric three- 
jet event sample than it is in the inclusive multihadron 
one, even assuming the flavor independence of the strong 
coupling constant. Thus the symmetric three jet sample 
discussed in this analysis is expected to differ slightly from 
a true normal mixture of quark flavors at the Z~  peak. 
We nonetheless retain the label "normal-mixture" for 
these data, for reasons of convenience. 

Our analysis technique relies on anti-tagging the gluon 
jet in the symmetric three-jet sample, as explained in the 
introduction. For this, we required a reconstructed sec- 
ondary vertex to be present in one of the two lower energy 
jets. The secondary vertex is associated with heavy quark 
decay: thus, the gluon jet was assumed to be the other 
of the two lower energy jets. In order to define secondary 
vertices, it was first necessary to determine the e § e -  col- 
lision point. The e + e -  collision point was determined for 
each event using a beam constrained primary vertex fit. 
Briefly, tracks which passed within 2 cm of  the mean 
e+e - collision position in the r -~b  plane were con- 
strained to a primary event vertex; tracks were removed 
from the fit if they contributed a x 2 value larger than 4.0 
and the remaining tracks were refitted. The procedure 
was iterated until all tracks in the fit contributed a Z 2 



Table 1. Mean calculated jet energies, 
mean visible energies and mean angles 
with respect to the highest energy (H.E.) 
jets, for the jets in the normal-mixture and 
tagged data samples 
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Calculated energy Visible energy Angle with H.E. jet 

Normal-mixture selection 
Highest energy jets 
Lower energy jets 

Tagged selection 
Highest energy jets 
Gluon-tagged jets 
Jets with vertex 

42.45 • 0.01 GeV 33.70 • 0.05 GeV - 
24.39+0.01 GeV 21.68 • 0.02 GeV 151.1+0.1 ~ 

42.43 • 0.03 GeV 33.68 • 0.21 GeV 
23.96 • 0.09 GeV 21.58 • 0.14 GeV 150.4 • 0.2 ~ 
24.85 • 0.09 GeV 21.42 • 0.15 GeV 151.6 • 0.2 ~ 

value smaller than 4.0. The method used to obtain the 
mean e+e - collision position is described in [16]. Sec- 
ondary vertices were identified inside a jet using the fol- 
lowing procedure. Tracks in the jet were selected if they 
contained at least one silicon microvertex detector hit, in 
addition to the criteria listed in Sect. 2. The assignment 
of a particle to a jet was obtained from the jet finder. 
The tracks were required to have a distance of closest 
approach to the e+e - collision point of  less than 0.3 cm 
in the r - ~ b  plane and an error on that quantity of  less 
than 0.1 cm. All tracks in the jet fulfilling these criteria 
were fitted to a common secondary vertex in the r - ~ b  
plane. Similarly to the primary vertex fit, the track with 
the largest contribution to the ~2 of the fit was removed 
if its ~z contribution was larger than 4.0. The remaining 
tracks were then refitted and the procedure iterated until 
all tracks in the fit contributed a ~2 value less than 4.0 
or else there were fewer than three tracks remaining, in 
which case the fit was deemed to have failed. 

For  jets with a successful fit, a decay length was de- 
fined to be the distance in the r -~b  plane between the 
reconstructed secondary vertex position and the e+e - 
collision point. The sign of the decay length was deter- 
mined by summing the three-momenta of  the tracks fitted 
to the secondary vertex. I f  this vector was in the same 
hemisphere as the vector between the beam collision point 
and the secondary vertex position, the decay length was 
positive, otherwise it was negative. The event was retained 
as a tagged event if one of  the two lower energy jets had 
a secondary vertex with a positive decay length between 
0.15 and 0.50cm, while the other one did not have a 
secondary vertex or else its decay length was less than 
0.15cm. In total, 1175 tagged events were obtained: in 
the following, we refer to these as the tagged sample. We 
refer to the lower energy jet without the secondary vertex 
tag as the gluon-tagged jet. The tagged sample is therefore 
a subset of  the normal-mixture one discussed above, but 
since it is a small subset we assume the two data sets to 
be statistically independent. The mean jet energies and 
angles between the jet directions are listed in Table 1 for 
the tagged sample. I t  is seen that the energies of  the gluon- 
tagged jets are the same as those of the lower energy jets 
in the normal-mixture sample to better than 2%: the cor- 
responding mean difference in angle with respect to the 
highest energy jets is only 0.7 ~ . 

In Fig. 1 a, we show the decay length distributions of  
the two lower energy jets of  the normal-mixture sample, 
added together. The distribution is seen to be asymmetric, 
with more entries at positive values of  decay length than 
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Fig. la ,  b. Secondary vertex decay length distribution for the sym- 
metric three-jet events. There are two entries per event, one for 
each of the two lower energy jets. The distribution is normalized 
by the total number of events, N, in the sample. The histogram 
shows the result from the Jetset-Peterson Monte Carlo, as explained 
in the text. For the Monte Carlo distribution, the contributions of 
bottom quark, charm quark, light quark and gluon jets are shown 
separately, by the shaded curves, a The decay length distribution 
from -0.4 to 0.6 cm; b an expanded view around the interval used 
to tag quark jets 

at negative values. The histogram shows the Monte  Carlo 
prediction f rom the Jetset par ton shower model [ 18], us- 
ing the Peterson fragmentation function [25] for heavy 
quark production. Our implementation of  this model is 
presented in Sect. 4.1. The Monte Carlo sample includes 
simulation of the detector [17] and the same selection 
criteria as the data*. The model is seen to provide a good 
description of the measurements. The contributions to 
the decay length distribution f rom bot tom quark, charm 
quark, light quark and gluon jets are shown separately 

* In addition, some rescaling of the track parameters is applied to 
the Monte Carlo in order to improve the agreement with the data 
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for the simulated events by the shaded curves. The excess 
of  entries at positive values of  decay length is seen to arise 
principally from the long-lived bottom quarks. The decay 
length interval from 0.15 to 0.50 cm used to tag quark 
jets is delineated by the vertical dashed lines in Fig. 1 a. 
Figure 1 b shows an enlargement around this region. By 
selecting jets with large decay lengths, we preferentially 
obtain bottom quark events, as intended, since this yields 
an efficient discrimination against the gluon jets. 

4 Estimated quark and gluon jet purities 

To evaluate the purity of  the quark and gluon jets in the 
normal-mixture and tagged samples, we use Monte Carlo 
events which include full simulation of the OPAL detec- 
tor [17] and the same event selection and analysis pro- 
cedures as the data (footnote on p. 391). These estimated 
quark and gluon jet purities are purely informational for 
the direct, model independent comparisons presented in 
Sect. 5. They are used in Sect. 6, however, to correct the 
data for the residual quark-gluon jet misidentification. 
Below, we discuss the Monte Carlo models used in our 
analysis and their results for jet purity. Following this, 
we present distributions from the data which substantiate 
the purity values obtained from the Monte Carlo. 

4.1 Monte Carlo models and jet purities 

For the underlying QCD physics event generators, we use 
Jetset, version 7.3 [18], Herwig, version 5.5 [19], and 
Cojets, versions 6.12 and 6.23 [20]. In these generators, 
the quarks and gluons created in Z o decay evolve through 
a parton shower to low mass values, followed by string, 
cluster and independent hadronization for Jetset, Herwig 
and Cojets, respectively. The parameter values of the 
models have been tuned to provide a good representation 
of the global event characteristics of hadronic Z 0 decays: 
Jetset and Herwig by OPAL and Cojets by its authors 
[22]. The OPAL parameter values for Jetset are given in 
[21]. Our tuned values for Herwig 55 are listed in Table 2.'* 
However, Jetset with its standard hadronization mecha- 
nism is known to yield too hard an energy spectrum for 
bot tom hadrons [23], while the bottom hadron energy 
spectrum from Herwig is, in comparison, very soft [24]. 
In this sense, Jetset and Herwig present opposite extremes 
as models for bot tom hadron production. We also use 

* These values differ from the default ones for Herwig 55, which 
also result from a fit to OPAL data, in that we now implement a 
new model feature which allows bottom baryons to be produced 
while maintaining a good description of the global event charac- 
teristics 

Table 2. Parameter values for the Herwig 55 Monte Carlo, obtained 
in a fit to OPAL data. The Monte Carlo variable names and tuned 
values are given; other parameters were left at their default settings 

Herwig 55 parameter values 

QCDLAM VGCUT VQCUT CLMAX CLPOW 

0.18 GeV 0.10 GeV 0.48 GeV 2.8 GeV 1.22 GeV 

Jetset in a non-standard mode, for which charm and bot- 
tom quark hadronization are described by the fragmen- 
tation function of Peterson et al. [25], in which case Jetset 
is known to describe well the available bottom hadron 
energy measurements from LEP [26]. For  the variant of  
Jetset which uses Peterson fragmentation, the parameter 
values were tuned by us to simultaneously describe OPAL 
measurements of global event properties in events with 
and without a hard, identified lepton associated with semi- 
leptonic bot tom quark decay; the resulting values are 
given in Table 3. 

The mass cutoff which terminates shower evolution is 
considerably larger in Cojets (3 GeV/c  2) than it is in Jet- 
set or Herwig (about 1 GeV/c2). This means that differ- 
ences between quark and gluon jets at the parton level, 
related to the different color charges of quarks and glu- 
ons, are less important in the former case. For  example, 
and average of 3.2 partons are present at the end of the 
parton shower in Cojets, compared to 9.1 in Jetset and 
6.6 in Herwig. Thus it is unlikely that a gluon jet in a 
three-jet event from Cojets will evolve to such a degree, 
through additional gluon radiation, that its energy and 
angular structure will differ much from those of a quark 
jet: larger patton level differences are present for Jetset 
and Herwig. Gluons hadronize in a different manner from 
quarks in Cojets 623, however, and so - as for Jetset and 
Herwig - differences are expected for this model between 
the hadron jets initiated by quarks and gluons. In con- 
trast, quark and gluon jets hadronize in the same manner 
in Cojets 612 and little difference is expected in this case 
between the properties of the two jet types. Comparison 
of the predictions of Cojets 612 to the results of the other 
models thus provides a convenient means to illustrate the 
sensitivity of our analysis to differences between quark 
and gluon jet structure. 

To evaluate the quark and gluon jet purities, we as- 
sociate each simulated hadron jet with an underlying 
quark or gluon jet. To perform this association, we em- 
ploy the following method. Monte Carlo events with de- 
tector simulation which pass the selection criteria given 
in Sect. 2 and 3 are examined at the parton level. The two 
hadron jets closest in angle to the directions of the pri- 
mary quark and antiquark which have evolved from the 

Table 3. Parameter values for the Jetset 73-Peterson Monte Carlo, obtained in a fit to OPAL data. The Monte Carlo variable names and 
tuned values are given; other parameter were left at their default settings 

Jetset 73-Peterson parameter values 

MSTJ (11) PARJ (21) PARJ (41) PARJ (42) PARJ (54) PARJ (55) PARJ (81) 

3 0.36 GeV 0.11 0.46 GeV -2 - 0.046 - 0.0057 0.31 GeV 
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Table 4. Quark jet purity, q, in percent, for the jets of the normal-mixture and tagged data samples, as determined using different QCD 
event generators which include simulation of the detector. The tagged event rate is also shown, defined by the percentage of events from 
the normal-mixture sample which are contained in the tagged one 

Jetset 73 Herwig 55 Cojets 623 Cojets 612 Jetset 73-Peterson 

Normal-mixture selection 
High energy jet 97.0 • 0.2 96.1 + 0.2 97.1 • 0.2 97.1 • 0.2 97.0 • 0.1 
Low energy jets 51.5 • 0.3 52.0 + 0.4 51.5 • 0.5 51.4 + 0.5 51.5 • 0.2 

Tagged selection 

High energy jet 96.8 • 0.7 94.0 • 1.4 96.1 • 1.2 96.9 • 1.0 96.8 • 0.6 
Gluon-tagged jet 16.4 • 1.5 23.2 • 2.5 16.2 • 2.3 18.5 • 2.3 20.0 • 1.3 
Jet with vertex 86.9 + 1.4 82.8 • 2.2 87.6 • 2.1 84.6 • 2.1 83.2 • 1.2 

Tagged event rate 5.5 • 0.2 3.9 • 0.2 4.4 • 0.3 4.9 • 0.3 5.0 • 0.2 

Z ~ decay are considered to be the quark jets; the re- 
maining jet is identified as the gluon jet. Note  that we do 
not, in general, distinguish between a quark and an an- 
t• in this analysis. 

The quark and gluon jet purities predicted for the 
normal-mixture and tagged samples are listed in Table 4. 
The values in this table state the quark jet content, q, in 
percent, for each of the jets; the gluon jet content, g, is 
given by g = (100 - q)%. Thus the Jetset-Peterson model 
predicts a purity of  g = 80.0% for the gluon-tagged jets: 
the other models predict values which agree to better than 
4% with the Jetset-Peterson one. For  the normal-mixture 
data, the lower energy jets are predicted to be about  51% 
quark and 49% gluon jets and the models agree to within 
1%, which is not surprising since in this case the purity 
values are mostly related to the event configuration and 
to the gluon bremsstrahlung spectrum, which is well 
known. We also include in Table 4 the tagged event rate 
predicted by the models, defined by the ratio of  the num- 
ber of  events in the tagged sample to that in the normal- 
mixture one, expressed in percent. The measured value 
of this quantity is 5.2 • 0.2%. Thus Jetset predicts a rate 
which is slightly higher than that observed in the data, 
while the Herwig, Cojets and Jetset-Peterson values are 
somewhat lower. The generally lower rates observed in 
the Monte Carlo samples may imply that the background 
level is somewhat underestimated by the detector simu- 
lation program: 

Since there is no unique prescription for determining 
whether a hadron jet is initiated by a quark or by a gluon, 
we tried a second method to make this association. For  
Monte Carlo events which satisfy the criteria of  Sect. 2 
and 3, three jets are reconstructed at the par ton level, 
using the k .  jet finder with a Ycut value of 0.02. About  
6% of the events do not yield three jets with this Ycut value 
but instead fall just outside this class. For  the 6% of  the 
events, an appropriate Ycut value is chosen such that three 
parton level jets are always reconstructed. Each of  the 
three parton jets is assigned to one of the hadron jets by 
finding the combination which minimizes the sum of the 
angular differences between them. The jets which contain 
the primary quark and ant• after their evolution 
has terminated, are taken to be the quark jets, while the 
remaining jet is assumed to be the gluon jet. The values 
for quark and gluon jet purity obtained f rom this second 

method agree with those obtained from the first to better 
than 1%. 

From Table 4, we estimate the gluon-tagged jets to 
have a purity of  80.0 • 1.3 • 4.4%, with a quark jet back- 
ground of  20.0 • 1.3 • 4.4%, where the first error is sta- 
tistical and the second is systematic. For  these estimates, 
we use the Jetset-Peterson values because this model is 
known to provide a good description of the bo t tom had- 
ron energy measurements. We consider three sources of  
systematic error: (1) the uncertainty in the mechanism of 
bot tom hadron production and decay, (2) imperfections 
in the event reconstruction and detector simulation, and 
(3) the ambiguity of  defining whether a jet arises from a 
quark or a gluon. The first uncertainty (3.5%) is assessed 
by taking half of  the maximum difference between the 
model predictions in Table 4. Since the generators are 
very different in their assumptions about  bo t tom quark 
hadronization, we feel this yields a reasonable estimate 
of  the uncertainty. For  example, Jetset and Herwig pres- 
ent opposite extremes for the energy spectrum of bot tom 
hadrons, as mentioned above. Jetset, Herwig and Cojets 
implement different models of  hadronization. Cojets con- 
tains different tables, compared to Jetset and Herwig, to 
describe bot tom hadron decays. Furthermore,  the Jetset 
and Herwig samples were generated using a value of 
cz = 0.039 cm for the mean bot tom hadron lifetime; for 
Cojets and Jetset-Peterson we used a larger value of 
cz = 0.042 cm*. The second source of systematic uncer- 
tainty, due to imperfect event reconstruction and detector 
simulation, is assessed by increasing the impact parameter  
resolution of tracks in the detector simulation program, 
using the Jetset-Peterson model, so that its tagged event 
rate is 5.4% and therefore one standard deviation larger 
than is observed in the data. The difference between the 
purity values obtained using the modified and unmodified 
programs (2.5%) is taken to be this uncertainty. The third 
source of  systematic uncertainty, due to the ambiguity of  
defining a quark or a gluon jet (0.7%), is given by the 
difference in the purity values obtained using the two 
methods to associate a hadron jet with a par ton type, 
discussed above. The three sources of  systematic error 
are added in quadrature to define the total systematic 
error. 
* These two values of c~ correspond to those published in 1990 
[27] and 1992 [28], respectively, in the Review of Particle Properties 
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Analogously, we estimate the composition of the lower 
energy jets in the normal-mixture sample to be 
48.5 _+ 0.2 4- 0.8% gluon and 51.5 • 0.2 + 0.8% quark jets, 
where the systematic error is defined by the two sources 
(1) and (3) of  systematic uncertainty listed above for the 
tagged data. We do not include the systematic error la- 
belled (2) for this second case, since the impact parameter 
resolution is not relevant for the normal-mixture selec- 
tion. 

4.2 Tests o f  the je t  purities using data 

By requiring that a secondary vertex be present in one of  
the lower energy jets, we obtain a tagged data sample 
which contains an enhanced bottom quark component 
compared to the normal-mixture sample. A well known 
signal for the presence of bot tom quarks is high energy 
leptons from semi-leptonic decay, which appear with large 
values of transverse momentum, P r ,  with respect to the 
jet axis. Therefore a means to ascertain the relative frac- 
tion of  bot tom quarks in the tagged and normal-mixture 
samples is to measure the ratio of the rates at which high 
momentum, high p r  leptons appear in the highest energy 
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Fig. 2a, b. a The ratio of the rate at which electrons and muons 
with momenta larger than 4 GeV/c are observed in the highest 
energy (H.E.)jets of the tagged sample, to the corresponding quan- 
tity from the normal-mixture sample, displayed versus differential 
bins of the transverse momentum, Pr, of the leptons with respect 
to the jet axis; the last bin includes all Pr values above 1.2 GeV/c. 
b The ratio of the rate at which secondary vertices are observed in 
the highest energy jets of the tagged sample, to the corresponding 
quantity from the normal-mixture sample, displayed versus dif- 
ferential bins of the decay length, L; the last bin includes all L 
values above 0.45 cm. The hatched bands in parts a and b show 
the Monte Carlo predictions, with their statistical uncertainties 

jets of the two data sets. Since the purity value of the 
gluon-tagged jets is strongly correlated with the bottom 
quark fraction in the tagged sample, as discussed in 
Sect. 3, this measurement provides a means to substan- 
tiate the purity estimates given in Sect. 4.1. 

H . E .  In Fig. 2a, we show the rate, Rlepton , a t  which high 
energy leptons appear in the highest energy jets of the 
tagged events, divided by the same quantity from the 

H . E .  normal-mixture ones ;  Rlepton equals the number of elec- 
trons and muons with momentum values larger than 
4 GeV/c  normalized by the number of events in the sam- 
ple. Muons are identified in multihadronic events by as- 
sociating tracks from the central detector with indepen- 
dently reconstructed track segments from the muon 
chambers. Electrons are identified by associating the cen- 
tral detector tracks with electromagnetic calorimeter clus- 
ters, as is discussed further in [29]. In the present case, 
electrons are accepted in the polar angle range 
I cos 0 ] < 0.7, muons in the range I cos 01 < 0.9 and the 
lepton is required to be within 30 ~ of the jet axis to which 
it is assigned. The data in Fig. 2a are displayed versus 
differential bins of Pr .  The rightmost bin in Fig. 2a in- 
cludes all P r  values larger than 1.2 GeV/c.  

For  values of P r  below about 1.0 GeV/c,  there are 
substantial contributions to the lepton distribution from 
charm quark decays, bot tom quark decays and back- 
ground. The background is principally due to hadrons 
which are misidentified as leptons and leptons from the 
decay of light quark hadrons. For  larger values of Pr ,  
the contributions from charm quarks and background 
are expected to be small and the leptons are expected to 
arise primarily from bottom quark decays. For P r  larger 
than 1.2 GeV/c,  the ratio between the tagged and normal- 
mixture data in Fig. 2a is seen to have a value of about 
2.5, which therefore sets a lower limit on the relative 
bottom quark population in the two data sets: only a 
lower limit is set, since there is still some background 
present, even for this bin. From the Jetset-Peterson model, 
we obtain a value of 3.0 for the ratio of the fraction of 
bot tom quark jets in the highest energy jets of the two 
data sets: the other models yield similar results. Thus the 
observed lepton rates in the highest energy jets suggest 
that these jets contain a fraction of  bot tom quarks which 
is more than twice as large in the tagged sample as it is 
in the normal-mixture one, which accords well with the 
prediction from the Monte Carlo. The results from the 
Jetset-Peterson model, obtained by analyzing the Monte 
Carlo events in the same manner as the data, are shown 
by the hatched band in Fig. 2a. The width of the band 
shows the statistical uncertainty, due to the finite Monte 
Carlo sample size. The Monte Carlo is seen to agree well 
with the measurements. 

A similar but independent consistency test of the quark 
and gluon jet purity values is obtained by comparing the 
relative rate at which secondary vertices appear in the 
highest energy jets of the tagged and normal-mixture data. 
In Fig. 2b, we show the ratio of the observed rates for 
these secondary vertices, displayed in differential bins of 

H . E .  the decay length L: the secondary vertex rate, Rver tex  , is 
defined in an analogous manner to the lepton rate, 

H . E .  Rlepton , discussed above. The rightmost bin in Fig. 2b 
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includes all decay length values larger than 0.45 cm. For  
values of  L below about 0.10 cm, the distribution is dom- 
inated by background from light quark jets and the ob- 
served rates do not differ much between the two data 
sets. For  values of L above about 0.15 cm, however, the 
secondary vertex rate is seeen to be about three times 
larger in the tagged sample than it is in the normal-mix- 
ture one. The corresponding result from the Jetset-Pe- 
terson model is shown by the hatched band in Fig. 2b. 
The Monte Carlo result agrees well with the data, again 
demonstrating that the enhancement factor for heavy 
quarks is well simulated. This provides a further consis- 
tency test - from the data - for the Monte Carlo purity 
values given in Sect. 4.1. 

5 Direct observation of quark=gluon jet differences 

We next compare the two lower energy jets in the normal- 
mixture sample to the gluon-tagged jets. Since these first 
jets are composed of about 49% gluon and 51% quark 
jets, as discussed in the Sect. 4.1, while the corresponding 
proportions for the gluon-tagged jets are about 80% and 
20%, this comparison yields a direct and model inde- 
pendent test for differences between quark and gluon jets. 
The main assumption is that the gluon jets have the same 
properties in the two data sets, which we believe to be 
reasonable since these jets are selected using the same 
criteria in the two cases.* Also, it is believed from QCD 
that a hard, acollinear gluon jet should be no different 
in a bot tom quark event than in a light flavor one [30]. 
We also assume that the 20% background from quark 
jets, which is present in the gluon-tagged data, has the 
same properties as the quark jets in the normal-mixture 
sample. This is expected since most of  the background 
events arise when a secondary vertex is reconstructed in 
the gluon jet, thus misidentifying it as a quark jet. In this 
case, there is no reason that one quark flavor should be 
favored over another, since the gluon jet is expected to 
have the same properties irrespective of the event flavor, 
as noted above. The second source of background is from 
the 3 % of the events in which the gluon jet has the highest 
energy, recoiling against two quark jets in the opposite 
hemisphere. In this case, the vertex tagging preferentially 
selects heavy quark events compared to light quark ones; 
however, we find the overall background rate from this 
source to be small and so make no correction for it (it 
contributes about 10% of the total background). We have 
also tested our assumptions using the Monte Carlo and 
find that there is essentially no difference between the 
properties of gluon jets selected using the secondary ver- 
tex criteria, compared to those selected from a normal- 
mixture sample in which the gluon jets are identified using 
the Monte Carlo information and mixed to include a 20% 
background from quark jets with normal properties. This 
illustrates that there is no important bias introduced into 
the jet properties by our analysis procedure. We note 
furthermore, that quark mass effects, such as are dis- 
cussed in Sect. 3, do not alter the validity of our as- 

* We reemphasize that the jet which contains the identified 
secondary vertex is not included in our analysis 

sumptions since they are not relevant for the gluon jets 
and since they affect the 20% quark jet background in 
the gluon-tagged sample in the same manner as they affect 
the quark jets in the normal-mixture events. 

In the following, the distributions obtained separately 
for the two lower energy jets in the normal-mixture 
sample are averaged: we refer to this average as the nor- 
mal-mixture jets. The normal-mixture jet sample there- 
fore contains 45 274 entries and has small statistical errors 
compared to the 1175 jets of the gluon-tagged sample. 

5.1 P a r t i c l e  e n e r g y  s p e c t r u m  

Figure 3a shows the mean energy of the particles, ( E ) ,  
versus the azimuthal angle qJ in the three-jet event plane. 
This distribution is constructed by weighting each particle 
with its energy before entering it at its position ~u, where 
~u is the angle in the event plane between the highest 
energy jet axis and the particle. The direction of  the high- 
est energy jet is obtained from the jet finder. Each bin is 
normalized by the number of particles in the bin after all 
events have been included. The histogram in Fig. 3 a shows 
<E)  versus q/ for  the normal-mixture jets, starting at the 
highest energy jet (~, - 0~ then proceeding through the 
lower energy jet (q /~  150 ~ to stop halfway around the 
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Fig. 3a, b. a The mean particle energy value (E) in GeV versus 
the azimuthal angle ~u in the three=jet event plane. The points with 
errors show the gluon jet side of the tagged sample. The histogram 
shows the average of the two event sides from the normal-mixture 
sample, b Monte Carlo distributions for the gluon jet side of events 
selected using the tagged (points with errors) and normal-mixture 
(histogram) criteria. For the normal-mixture sample, the quark and 
gluon jets are identified using the Monte Carlo information, as 
explained in the text 
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event plane (q /=  180~ The points with errors show <E> 
versus q/for  the gluon jet side of the tagged sample, with 
their statistical uncertainties. 

We define a "jet peak" from 120 ~ < q / <  180 ~ and a 
"jet core" from 135 ~ < ~u < 165 ~ These regions are de- 
lineated by the dashed and dotted lines, respectively, in 
Fig. 3 a. This definition of  the jet peak differs slightly from 
that used in [6] because we now wish this interval to be 
symmetric around ~u = 150 ~ A small shift is visible in 
Fig. 3a between the peak positions of the gluon-tagged 
and normal-mixture jets. This is due to the finite bin size 
of  + 10 ~ used to define symmetric events and to the na- 
ture of the bremsstrahlung spectrum, which tends to shift 
the gluon jets to smaller values of energy and ~u. Since 
the energies of the normal-mixture and gluon-tagged jets 
are the same to better than 2%, this small shift does not 
affect our direct comparisons in a significant manner. 

It is seen from Fig. 3 a that the mean particle energy 
value of the gluon-tagged jets is smaller than it is for the 
normal-mixture jets in the jet core, while no such dif- 
ference is seen elsewhere in the jet peak. This is consistent 
with what was first observed in [6]. The Z 2 value between 
the two distributions is 38.5 (12 bins) for the jet peak and 
35.4 (6 bins) for the jet core. We therefore observe a clear 
signal for quark-gluon jet differences: the overall particle 
energy spectrum of gluon jets is softer than it is for quark 
jets, as expected from QCD. 

Besides the difference in ( E )  for q/~ 150 ~ there is a 
visible difference between the two data sets in the region 
of the highest energy jets, 0 ~ < q / <  30 ~ The points with 
errors in this region represent an enhanced sample of 
bot tom quark jets, whereas the histogram corresponds 
approximately to a normal flavor mixture of quark jets 
at the Z ~ peak*. However, bottom jets are known to yield 
a larger mean particle multiplicity than jets from lighter 
quark types [31]. The value of<E> in Fig. 3a for ~u < 30 ~ 
is thus smaller for the bottom-enhanced quark jets than 
it is for the normal-mixture ones - as required by con- 
servation of energy - since the jet energies are the same 
in the two cases. This difference for the highest energy 
jets does not affect our study since we only assume the 
gluon jet properties and their background to be the same 
in the two data sets, as mentioned in the introduction to 
this section. Consider, for example, the distributions 
shown in Fig. 3b, obtained using the Jetset-Peterson 
model including detector simulation. The points with er- 
rors show the gluon jet side of events in which the Monte 
Carlo is treated like the tagged data sample. The histo- 
grams shows normal-mixture events for which the quark 
and gluon jets are identified using the Monte Carlo in- 
formation, and for which the gluon and quark jet sides 
are selected randomly event-by-event to correspond to 
the 80% and 20% gluon and quark jet composition of  
the tagged sample. In the region of  the highest energy jet, 
the same differences are visible as are seen for the data 
in Fig. 3a. The gluon jet peak at ~,~150 ~ is virtually 

* From the Monte Carlo, we estimate the flavor composition of 
the tagged sample to be 61% bottom quarks, 15% charm quarks 
and 24% strange, up or down quarks; the normal-mixture sample 
is predicted to contain about 20% bottom quarks, 22% strange and 
down quarks and 18% charm and up quarks 
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Fig. 4a, b. a Inclusive scaled particle energy distributions of the 
gluon-tagged (g.tag) and normal-mixture (n.mix) jets; b ratio of the 
two curves in a 

identical for the two cases, however, demonstrating the 
absence of an important bias in our analysis. We find 
similar results for the other distributions which we study. 

The softness of the gluon jet particle energy spectrum 
with respect to that of  the quark jet is further illustrated 
in Fig. 4a, which shows the inclusive scaled energy dis- 
tribution of particles, (1//F/total) dntotal/dxE, for the nor- 
mal-mixture (histogram) and gluon-tagged (points with 
errors) jets. The particle assignments to a jet are taken 
from the jet finder; xE= E/E3v~t ,  with E the particle en- 
ergy and EvJi~ t. the visible jet energy. The ratio of the gluon- 
tagged to the normal-mixture measurements is shown in 
4b. The )r value between the two curves is 90.5 (9 bins). 

5 . 2  P a r t i c l e  m u l t i p l i c i t y  

Since the quark and gluon jets in our study have the same 
energy, while the particle energy spectrum of gluon jets 
is observed to be softer, the gluon jets can be expected 
to exhibit a larger mean multiplicity. Figure 5a shows the 
multiplicity of tracks and clusters assigned to the gluon- 
tagged and normal-mixture jets by the jet finder, F/tota I . 
The mean values are 13.76_+0.14 and 12.735:0.02, re- 
spectively; the ratio between them is 1.081 • 0.011, which 
exceeds unity by 7.4 standard deviations (s.d.). The dis- 
tributions for charged tracks alone, nob., are shown in 
Fig. 5b, for which the corresponding values are 
8.62 + 0.10 and 7.90 _ 0.02, giving the ratio 1.092 • 0.013 
which is 7.1 s.d. larger than unity. Thus the gluon jets 
do indeed yield a larger multiplicity than the quark jets. 
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Since we rely on the jet finder to determine the particle 
assignments to a jet, our results can depend on the choice 
of the jet algorithm. For  example, the k .  algorithm oc- 
casionally assigns soft particles to a jet which lies in the 
opposite hemisphere. This feature especially affects the 
multiplicity distribution, compared to the other distri- 
butions which we study, since it is dominated by soft 
particles. Following the suggestions of [32], we therefore 
reassign the particles in an event to the nearest jet axis - 
originally found using the k• scheme - and then recom- 
pute the jet axes to be the vector sum of the constituent 
particle momenta. This procedure is iterated until the 
particle assignments are stable. On average, 1.4 particles 
per event are reassigned to a different jet axis; the highest 
energy jet changes in direction by a mean of 0.9 ~ and the 
two lower energy jets by 1.7 ~ The estimated purity levels 
of the quark and gluon jets remain essentially unchanged, 
as determined by applying the reassignment procedure at 
both the parton and hadron levels in the Monte Carlo 
and then re-performing the quark and gluon jet associ- 
ation discussed in Sect. 4.1. For  the modified jet defini- 
tion, we obtain mean values for particle multiplicity of 
13.46 + 0.12 and 12.72_ 0.02 for the gluon-tagged and 
normal-mixture jets, using the charged tracks and clus- 
ters. For  charged tracks alone, the corresponding results 
are 8.42 _ 0.09 and 7.89 • 0.02. The two cases yield ratios 
of 1.058 • 0.010 and 1.068 Jr 0.012, respectively, which 
differ from unity by 5.8 and 5.7 s.d. We thus observe a 
smaller difference between quark and gluon jet multi- 
plicities using the modified assignments: the difference 

between the mean multiplicity values remains significant, 
however. 

In our previous study of quark and gluon jet differ- 
ences [6], we did not use the jet finder assignments to 
associate particles with a jet, but instead divided each 
event into hemispheres using the plane which was per- 
pendicular to the three-jet event plane and which con- 
tained the highest energy jet axis. This resulted in distri- 
butions analogous to Fig. 3a. The mean multiplicity 
values of the gluon-tagged and normal-mixture jets were 
determined by integrating the corresponding multiplicity 
distributions over the jet peak regions, which were de- 
fined in a similar manner to that indicated by the dashed 
line in Fig. 3 a. Therefore particles were always associated 
with a jet in the same hemisphere. In this sense, our 
previous method is similar to the alternative jet definition 
discussed in the previous paragraph, based on the nearest 
angle between a jet and a particle. Thus it is appropriate 
to compare the results obtained with this alternative jet 
definition to our previous results. In our earlier study, 
we found a ratio of 1.03 •  (stat.) and 1.02• 
(stat.) between the mean multiplicities of gluon and quark 
jets, for the total and charged multiplicities, respectively. 
These data were not corrected for quark and gluon jet 
misidentification and so are comparable to those pre- 
sented in this section*. Our previous result therefore 
agrees with the result presented above which uses the 
reassigned particles, to within about one standard de- 
viation of the statistical error. If we apply our previous 
method of determining a jet's multiplicity to the data 
samples discussed in the present study, we obtain ratios 
of 1.051• and 1.056+0.015 between the gluon- 
tagged and normal-mixture jets, for all particles and for 
charged particles alone, respectively. These last values 
also agree well with our previous results and with those 
based on the alternative jet definition discussed above. 

5 . 3  J e t  w i d t h s  

A common measure of  the broadness of a jet is the frac- 
tion of its visible energy, fE (0), which lies within a cone 
of half-angle 0 around the jet axis [33]: 

I ( d E J ~ t . / d O ' ) d O '  

f E ( O )  - o" =0 ~ E ~e' 
- - v i s  ' 

(2) 

In Fig. 6, we show the distribution of the fraction of the 
visible energy of  a jet contained within a cone of  half  
angle 0 = 10 ~ around the jet axes, for the normal-mixture 
and gluon-tagged jets. The normal-mixture jets are ob- 
served to be more peaked toward large values of f e ( O )  

than are the gluon-tagged ones. Therefore gluon jets have 
a smaller fraction of their energy close to the jet axis than 
quark jets and in this sense are broader. Again, this is in 
qualitative agreement with the expectations of  QCD. The 

* In our previous study, the estimated purity values of the gluon 
and quark jets were about 80% for both jet types: since the ratios 
observed are close to unity, the difference in estimated purities with 
respect to the present study does not much affect their values 



398 

OPAL 
2 -I { gIuon-tagged jet Q 

T J-L normal-m~xture jet 

z 
" 1 0  

~-" 1 
Z 

U_-. 0= 1 0 ~ + r ~.1 

0 L I , I , I ~ , , , ~ , I , , t I * 1  , , 

0 0.2 0.4 0.6 0.8 1 1.2 
&(O) 

Fig. 6. The fraction of the jet  visible energy contained within a cone 
of half angle 10 ~ around the jet axis, for the gluon-tagged and 
normal-mixture data 

A 
(D 

ta  

V 

0.8 

0.6 

0.4 

0.2 

0 

0.4 

(o) , : 
__I �9 

_ _ 1  �9 

OPAL 

gluon-togged jet 
J - L  n o r m a l - m i x t u r e  j e t  

I J , l J , , , I , J , , I , , J , l , , j , l , , , , I J , , , I J , , , I , J a ~  

5 10 15 20 25 30 35 40 45 

o 

(D 

0.s ~-- (b) OPAL 

0.2 

0.1 

0 

r 

r 
r 

5 10 15 20 25 30 35 40 45 

o 
Fig. 7a, b. a The mean value of the fractional jet energy contained 
within a cone of half  angle 0, ( f e (O) ) ,  versus 0, for the gluon- 
tagged and normal-mixture jets; b the fractional difference between 
the curves in a, de(O ), versus 0 

X 2 value between the normal-mixture and gluon-tagged 
distributions is 130 (14 bins). 

Figure 7a shows the mean value of  the fractional jet 
energy, ( f e (O ) ) ,  versus the cone half angle 0, for 
0 ~ < 0 < 45 ~ The fractional difference between the two 
curves, defined by 

dE(O ) -- ( fe(O))"mix - -  ( f E ( O ) ) g ' t a g  (3) 
( f E ( O ) > g . t a g  

is shown in Fig. 7b, where the subscripts in (3) refer to 
the normal-mixture (n.mix) and gluon-tagged (g.tag) data. 

o 

W " 0  

W 

II 

I~LIJ 

0.3 

(o) -q, OPAL 

0.2 + gluon-tagged jet 
J-L normal-mixture jet 

0./ - - ]  . 

q .  
[ �9 
- - 1  a 

0 , , , I  . . . .  I . . . .  I . . . .  I . . . .  b . . . .  I . . . .  I . . . .  i �9 

0 5 10 15 20 25 30 35 40 45 

o 
0.4 

0.3 - -_@ (b) OPAL 
0.2 

~_ 0.1 + 
"-Sw 
" ~  0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

o, +_+_r 
-0.2 

- 0 . 3  , , , I  . . . .  L . . . .  I . . . .  I . . . .  I . . . .  I , , , , 1  . . . .  I . . . .  

0 5 10 15 20 25 30 35 40 45 

6) 
Fig. 8a, b. a The differential distribution of the data shown in 
Fig. 7a, (1/Ev!~! ) dE~' . /d  0, versus 0, for the gluon-tagged and nor- 
mal-mixture jets; b the fractional difference between the curves in 
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The errors between the different bins of  Fig. 7 are cor- 
related since each bin contains the integral over smaller 
0 values�9 In Figs. 8a and b we show the corresponding 
differential distributions, f e  aiff = (1/EjTt~.) dEvJT t . /d  0 and 
de aiff, versus 0. The quark jets are seen to have a larger 
energy density for 0 < 10 ~ while the energy density of the 
gluon jets is larger for 0 > 10 ~ 

Another common measure of the width of a jet is the 
total particle momentum normal to the jet axis. Distri- 
butions in total transverse particle momentum can be 
resolved into orthogonal components in and out of the 
three-jet event plane, p~n and out P r  , and they thus yield 
additional, detailed information about jet structure. Con- 
structing these distributions by using the particle assign- 
ments to jets from the k• jet algorithm, we find mean 
values for p~  of 3.58• GeV/c  and 3.26• 
GeV/c  and for p~Ut of  3.59 • 0.05 GeV/c  and 3.25 • 0.01 
GeV/c,  for the gluon-tagged and normal-mixture data, 
respectively: the ratios between them are 1.098• 
and 1.107• for the two directions. The broadness 
of gluon jets relative to quark jets is therefore present in 
both components and has about the same relative mag- 
nitude in both cases. This is consistent with our earlier 
results [6]. If the mean values of  particle tansverse mo- 
mentum are considered, in out pT/ntotal and P r  /ntota], we find 
means of  0.260 • 0.004 GeV/c  and 0.254 • 0.001 GeV/c  
for the component in the event plane and 0.262 
•  and 0.254_+0.001 GeV/c  for the com- 
ponent out of  the event plane, for the gluon-tagged and 



normal-mixture jets: the ratios between the gluon-tagged 
and normal-mixture data are therefore 1.024 + 0.014 and 
1.035_+0.013, respectively. The smaller difference of 
about  3% which is observed between the two jet types 
when the mean transverse momentum values are con- 
sidered, relative to the 11% difference noted above for 
the total transverse momentum values, demonstrates that 
most  of  the difference for this second case is due to the 
different mean multiplicities of  the two jet types and not 
to the difference in their energy spectra. 

6 Corrected distributions 

We next correct the distributions presented in Sect. 5 for 
the residual quark-gluon jet misidentification, to obtain 
distributions valid for pure quark and pure gluon jet 
states. I f  Dg.tag(Zi) and Dn.mix(Zi) represent the gluon- 
tagged and normal-mixture data, with zi the content of  
bin i, we may write 

Dg.t.g (zi) = (1 - q g . t a g ) "  G (zi) + q g . t a g "  Q (z,) ; 

O n . m i  x (Zi) = ( 1 - -  q n . m i x )  " a (zi) q- q..m~," Q (z,) ; 
(4) 
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acceptance and resolution. The Monte Carlo curves include full 
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a The corrected quark jet distribution, b the corrected gluon jet 
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where G (Zi) and Q (z,.) are the distributions for pure gluon 
and pure quark jets, respectively. The values of  the co- 
efficients qg.tag and G.mix were presented in Sect. 4: 

qg.tag = 0.200 ; qn.mix = 0.515. (5) 

Knowledge of these coefficients permits (4) to be inverted 
for G(z i )  and Q (zi). Note  that these coefficients are the 
only Monte Carlo information used to correct the data. 
We do not correct them for detector acceptance and 
resolution in order to keep the Monte  Carlo dependence 
of  the results as small as possible. 

In Figs. 9-14, we show the results of  Figs. 3-8 after 
correcting them in this manner. The bin-to-bin statistical 
fluctuations of  the quark jet state, Q (zi), are about  the 
same size and are anti-correlated with those of  the gluon 
jet state, G (zi). The statistical significance of  the differ- 
ences we observe between quark and gluon jets is there- 
fore more readily seen f rom Figs. 3-8, without correc- 
tions, while the size of  those differences is shown in 
Figs. 9-14. Included in Figs. 9-14 are the predictions of  
the QCD Monte Carlo programs discussed in Sect. 4.1. 
The Monte  Carlo samples include full detector simulation 
and the same selection criteria as the data, except that  
quark and gluon jets have been identified using the Monte  
Carlo information. The simulated events therefore ap- 
proximately represent a normal mixture of  quark jet fla- 
vors at the Z 0 peak. The Jetset and Jetset-Peterson pre- 
dictions are very similar and so we only include the Jetset- 
Peterson results in Figs. 9-14 and in the discussion below. 
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The corrected mean particle energy distribution, d E )  
versus q/, is shown for the quark jets in Fig. 9a; the cor- 
responding distribution for the gluon jets is shown in 
Fig. 9b. In the region of the jet core, around q /~  150 ~ 
the smaller mean particle energy value of the gluon jets, 
relative to the quark jets, is clear. Jetset-Peterson, Herwig 
and Cojets 623 provide satisfactory descriptions of the 
data, although the quark jet distribution is better de- 
scribed by the first two models than by the last. Cojets 612 
does not contain significant quark-gluon jet differences, 
as discussed in Sect. 4.1. It does not describe the data, as 
is especially clear for the gluon jet. This demonstrates the 
sensitivity of this distribution to differences between quark 
and gluon jet structure. The differences between the cor- 
rected data and models seen for the highest energy jets, 
corresponding to 0 ~ < ~u < 30 ~ in Fig. 9, are due to the 
enhanced bottom quark population which is present for 
these jets in the tagged sample, relative to the normal- 
mixture sample, as discussed in Sect. 5.1: the correction 
equations (4) are not valid in this region. These differ- 
ences for the highest energy jets do not influence our 
study, as explained in Sect. 5.1. Figure 10a shows the in- 
clusive particle energy spectrum, (l/ntota~)dntotal/dxE, for 
the corrected data; the ratio between the gluon and quark 
jet curves is shown in Fig. 10b. The errors in Fig. 10b 
take into account the correlations between G(z~) and 
Q (z~). Particles with large values of x E (xE > 0.45) are 
seen to occur in gluon jets at only about one quarter the 
rate that they occur in quark jets. Again, the data are 
adequately described by the models which include sign- 
ficant quark-gluon jet differences, but not by Cojets 612. 

Figure 11 displays the corrected particle multiplicity 
distributions of the jets, using the k .  jet finder assign- 
ments. The mean values for G(zi )  and Q(zi) ,  includ- 
ing charged tracks and unassociated clusters (Fig. 11 a 
and b), are (ntotal)gluon=14.41-k-0.13 and < / ' / t o t a l ) q u a r k  

= 11.37 • 0.13, respectively. For  charged tracks alone 
(Fig. l l c  and d), we obtain (nch.)g~uon=9.10• and 
<nch.)quar k = 6.86 • 0.09. These lead to ratios of 

(ntota~)o . . . .  1.267 • 0.043 (stat.) • 0.055 (syst.) ; 
< / ' / t o t a l > q u a r k  (6) 

(nCh. >gl . . . .  1.326 -4- 0.054 (stat.) + 0.073 (syst.), 
<n~h >quark 

where the statistical errors take into account the corre- 
lations between the numerator and denominator. The sys- 
tematic error has two sources: (1) the uncertainty in the 
values of the correction coefficients, discussed in Sect. 4, 
and (2) the maximum variation in the result which is 
observed when we choose a decay length interval of 0.10 
to 0.50 cm, or of  0.15 to 0.30 cm, to tag quark jets, instead 
of  the interval of  0.15 to 0.50 cm used for the rest of  our 
analysis. The two sources of systematic uncertainty con- 
tribute values of 0.042 and 0.035, respectively, to the sys- 
tematic error of the total multiplicity ratio; the corre- 
sponding values for charged tracks alone are 0.060 and 
0.042. Thus the gluon jets yield a particle multiplicity 
which is about 30% larger than the quark jets. Once again, 
Jetset-Peterson, Herwig and Cojets 623 provide a satis- 
factory description of the data, although the quark jet is 
better described by Jetset-Peterson and Herwig than it is 
by Cojets. In contrast, Cojets 612 does not describe the 
measurements, especially not those of  the gluonjet. The ratio 
of  mean multiplicity between the gluon and quark jets is 
found to be 1.26, 1.21, 1.16 and 0.95 for the four models, 
respectively, with an error of 0.01 in all cases due to 
limited Monte Carlo statistics. The models give the same 
results for charged tracks alone as they do when the un- 
associated clusters are included. The Monte Carlo results 
for the multiplicity ratios are, in addition, found to be 
the same at the event generator level as they are when 
detector simulation and selection cuts are included, to 
within about 0.02: thus effects related to detector accep- 
tance and resolution provide only a small correction to 
these ratios. If  the alternative method to associate par- 
ticles and jets is employed, based on reassigning particles 
to the jet to which they are nearest in angle, as discussed 
in Sect. 5.2, the corrected multiplicity ratios (6) become 
1.19 _+ 0.04 (stat.) for the total multiplicity and 1.20 • 0.04 
(stat.) for the charged multiplicity, which are smaller than 
the values obtained using the k~ jet finder assignments. 
The numerical result for the ratio values is therefore sen- 
sitive to the choice of the jet algorithm. 

In our earlier publication [6], based on lepton tagging 
of quark jets and a much smaller data sample, the data 
were not corrected for quark and gluon jet misidentifi- 
cation and so cannot be directly compared to those pre- 
sented in this section. Also, the jet definitions used in our 
previous and present studies are not the same. Our pre- 
vious results are consistent with the present ones when 
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compared under similar conditions, as discussed in 
Sect. 5.2. 

The corrected jet cone energy fraction distribution, 
fE(O), is shown in Fig. 12 for 0 = 10 ~ The quark jet dis- 
tribution peaks toward large values of fE(O) while the 
gluon jet distribution peaks toward small values: thus the 
jet energy is more tightly collimated around the jet axis 
for quark jets than it is for gluon jets. Again the models 
- with the exception of Cojets 612 - provide a satisfactory 
description of the measurements, although Cojets 623 
does not describe the quark jets as well as Jetset-Peterson 
and Herwig. Figures 13a and 14a show the corrected mean 
fractional jet energy distribution in its integrated and dif- 
ferential form, ( fE  (0)) and (1/E3v~. ) dE~  t . /d 0, versus 0. 
The quark jets are observed to have an average of about 
31% of their energy enclosed within a cone of half angle 
5 ~ around the jet axis, compared to only 14% for gluon 
jets. The corresponding fractional differences, dE(O ) and 
d diff', are  shown in Figs. 13b and 14b; the errors shown 
take into account the correlations between G(zi) and 
Q(zi). It is seen from these last figures that there is a 
larger difference between quark and gluon jet widths in 
the data than in the models. This was also observed in 
[6], using a different technique to measure the jet widths: 
the general shape of the measured distribution is well 
represented by Jetset-Peterson, Herwig and Cojets 623, 
however. In contrast, Cojets 612 yields an essentially flat 
curve in Figs. 13b and 14b and is in marked disagreement 
with the data, as expected. 

We have tested the stability of our results to the event 
definition, by repeating the analysis using a narrower 
angular range to define the symmetric three-jet topology. 
We required the angle between the highest energy jet and 
the two others to be in the range 150+ 5 ~ , instead of the 
range 150 • 10 ~ used otherwise. With the more restrictive 
geometrical condition, the three-jet event sample was re- 
duced in size by approximately a factor of four, but it 
yielded consistent results with those presented above. In 
particular, the ratio of the gluon to quark jet mean mul- 
tiplicities remained the same to better than one standard 
deviation of the statistical error given above. We also 
tested the sensitivity of our results to the choice of the 
Yout value used with the k .  jet finder, by repeating the 
analysis using Ycut=0.04 instead of Yo~t=0.02. Again, 
we found essentially identical results to those presented 
above and the multiplicity ratios remained within one 
standard deviation of the statistical error given in (6). As 
a last note, we point out that although the distributions 
presented here are not corrected for detector acceptance 
and resolution, these corrections are small for several of 
the quantities in our study. This is true for the multiplicity 
ratios of gluon to quark jets, as discussed above. Like- 
wise, the jet width distributions, Figs. 12-14, are found 
to have essentially negligible detector corrections. 

7 Summary and discussion 

In this paper, we have studied three-jet events from had- 
ronic Z ~ decays in which the energies and environments 
of the two lowest energy jets are the same. This type of 

analysis was first introduced by our collaboration in two 
earlier publications [6, 8]. Here, we extend our previous 
ideas by using reconstructed secondary vertices in multi- 
jet events to perform the quark and gluon jet separation. 
Use of the symmetric events allows the properties of the 
quark and gluon jets to be compared in a simple and 
direct manner. We do not require Monte Carlo calcula- 
tions in order to establish the experimental results. Monte 
Carlo models are used to estimate the quark and gluon 
jet misidentification level, to illustrate that the jet 
properties are not biased by the analysis technique and 
to demonstrate the sensitivity of the chosen distributions 
to differences between quark and gluon jet structure. The 
experimental results stand on their own, however, and 
are entirely model independent. 

For the jets with energies of about 24 GeV which we 
study, we observe significant differences between quark 
and gluon jet properties. The particle energy spectrum of 
gluon jets is softer, their multiplicity is larger, and their 
energy is less concentrated near the jet core compared to 
quark jets: thus, the gluon jets are broader. These features 
are in qualitative agreement with the expectations of per- 
turbative QCD. The ratio of 1.27 which we observe be- 
tween the gluon and quark jet mean multiplicities, after 
correcting for the residual quark and gluon jet misiden- 
tification, is considerably smaller than the naive theoreti- 
cal value of 9/4 mentioned in the introduction. Recently, 
an analytic calculation of particle multiplicity in two- and 
three-jet events from e+e - annihilations has been pre- 
sented [4], which demonstrates that higher orders and 
cancellations associated with coherent soft gluon emis- 
sion substantially reduce the theoretical expectation for 
this ratio. However, this calculation is performed for a 
general class of events rather than for the geometrically 
symmetric ones which we study and so is not directly 
comparable to our measurement. The multiplicity result 
also depends on the jet definition: if we assign particles 
to the jet to which they are nearest in angle, rather than 
use the assignments from the jet finder, we find a smaller 
ratio of about 1.20 between the quark and gluon jet mean 
multiplicities. The result found here is entirely consistent 
with that obtained in our previous study, if a similar 
method of associating the soft particles to a jet is em- 
ployed. 

We also compared our results to model calculations 
which incorporate perturbative QCD. At the hadron level, 
Jetset and Herwig describe the quark and gluon jet mea- 
surements quite well. The description of the gluon jet by 
Cojets, version 6.23, is also good, but this model does 
not describe the quark jet as accurately as the other two 
models. It is possible that the Cojets description of the 
quark jet could be improved by a simple parameter ad- 
justment. Cojets, version 6.12, which does not contain 
significant quark-gluon jet differences, is in clear dis- 
agreement with the data, as expected. 

The Monte Carlo models contain detailed simulations 
of QCD radiation and interference. It is therefore inter- 
esting to examine their predictions at a more fundamental 
level, to obtain insight into possible interpretations of 
our observations. At the parton level, using the quark 
and gluon four-momenta after termination of their evo- 
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lut ion,  Jetset  and  Herwig  predic t  qual i ta t ive  differences 
between q u a r k  and  gluon je ts  which are  s imilar  to those  
which they yield at  the h a d r o n  level. This  suggests tha t  
the observed  differences have a pe r tu rba t ive  origin,  at  
least  in par t .  Us ing  the same je t  f inder  and  symmetr ic  
three-jet  cond i t ion  as we app ly  at  the h a d r o n  level, the 
p a r t o n  level mul t ip l ic i ty  ra t ios  o f  g luon to q u a r k  jets  are  
found  to be 1.29 and  1.19 for  Jetset  and  Herwig,  respec- 
tively. F o r  the mean  mul t ip l ic i ty  values at  the p a r t o n  
level, we sum the number  o f  pa r tons  assoc ia ted  with  each 
je t  af ter  t e rmina t ion  o f  the pe r tu rba t ive  stage and  then 
subt rac t  uni ty  so tha t  the con t r ibu t ion  o f  the ini t ia t ing 
qua rk  or  g luon i tself  is no t  inc luded:  the mul t ip l ic i ty  ra t io  
which results  co r responds  more  closely to  the theore t ica l  
ca lcula t ions  [1] t han  i f  the ini t ia t ing q u a r k  or  g luon is 
inc luded in the sums. These ra t ios  are very s imilar  to the 
co r re spond ing  ones found  at  the h a d r o n  level for  the two 
models ,  which were given in Sect. 6. The  differences ob-  
served between q u a r k  and  g luon jets  using the pa r t ons  
are not  ent i rely the same, however ,  as those  observed  
using the hadrons .  F o r  example ,  the different ia l  je t  cone 
energy d is t r ibu t ions  o f  qua rk  and  gluon jets  cross each 
o ther  at  an angle o f  a b o u t  10 ~ at  the h a d r o n  level, as seen 
f rom Figs. 8 or  14. A t  the p a r t o n  level, we observe tha t  
the two curves cross at  a smal ler  angle o f  a b o u t  5 ~ for  
bo th  Jetset  and  Herwig.  This  suggests tha t  had ron i z a t i on  
also plays  an  i m p o r t a n t  role in expla in ing the quant i t a t ive  
features  o f  the observed  qua rk -g luon  je t  differences.  
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