Lobachevskii Journal of Mathematics 2006 vol.21, pages 3-31

Hardy type inequalities in higher dimensions with explicit estimate of constants

Avkhadiev F.

Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

Let Ω be an open set in $\mathbb{R}n$ such that $\Omega \neq \mathbb{R}n$. For $1 \le p < \infty$, $1 < s < \infty$ and $\delta = \text{dist}(x,\partial \text{Omega};)$ we estimate the Hardy constant cp(s, $\Omega) = \sup\{||f/\delta s/p||Lp(\Omega): f \in C \mid 0 \infty(\Omega), ||(\nabla f)/\delta s/p-1||Lp (\Omega = 1) and some related quantities. For open sets <math>\Omega \subset \mathbb{R}^2$ we prove the following bilateral estimates min $\{2,p\}$ MO(Ω) \le cp($2,\Omega \le 2p$ (π MO(Ω) + a0)2, a0 = 4.38, where Mo(Ω) is the geometrical parameter denned as the maximum modulus of ring domains in Ω with center on $\partial\Omega$. Since the condition M $0(\Omega) \le \infty$ means the uniformly perfectness of $\partial\Omega$, these estimates give a direct proof of the following Ancona-Pommerenke theorem: C2($2, \Omega$) is finite if and only if the boundary set $\partial\Omega$ is uniformly perfect (see [2], [22] and [40]). Moreover, we obtain the following direct extension of the one dimensional Hardy inequality to the case $n \ge 2$: if s > n, then for arbitrary open sets $\Omega \subset \mathbb{R}n$ ($\Omega \neq \mathbb{R}n$) and any $p \in [1, \infty)$ the sharp inequality cp(s, Ω) $\le p/(s - n)$ is valid. This gives a solution of a known problem due to J.L.Lewis [31] and A.Wannebo [44]. Estimates of constants in certain other Hardy and Rellich type inequalities are also considered. In particular, we obtain an improved version of a Hardy type inequality by H.Brezis and M.Marcus [13] for convex domains and give its generalizations.

Keywords

Distance to the boundary, Hardy type inequalities, Rellich type inequalities, Uniformly perfect sets