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1. Introduction 

Results from inclusive e lec t ron-proton scattering 
have been seminal in establishing our present picture 
of  hadronic structure [ 1 ]. Precise measurements  of  
electron, neutrino and muon scattering from both nu- 
cleon and nuclear targets have allowed detai led deter- 
minat ions  of  the par ton distributions.  The results also 
provide a major  testing ground for Quantum Chromo- 
dynamics,  both in studies of  the evolution of  the struc- 
ture functions with Q2, the square of  the momentum 
transfer, as well as in comparisons of  data to the pre- 
dictions of  various sum rules. With  the first operat ion 
of  the e lec t ron-proton coll iding-beam facility, HERA, 
at DESY, such experiments can be extended into a 
new range of  the kinematic  variables Qz and Bjorken 
x [2]. Results from the H1 Collaborat ion have been 
presented in ref. [3]. The results given in this letter 
come from the first month of  running and cover the 
Q2 range from a few GeV 2 up to ~ 1000 GeV 2. Due 
to the large centre of  mass energy, v~  = 296 GeV, the 
events occur at low values of  Bjorken x extending the 
range studied by previous experiments by two orders 
of  magnitude,  to x ~ 1 0  - 4  at Q2 ~ 10 GeV 2. The 
data, therefore, explore nucleon structure in a new 
kinematic  regime. 

2. Kinematics of deep inelastic scattering at HERA 

To describe the kinematics of  the events in the neu- 
tral current, deep inelastic scattering (DIS) reaction 

ep ~ eh,  (1) 

where h is the final hadronic system, it is conven- 
t ional to use the Lorentz scalars y (the normalised en- 
ergy transfer to the proton in its rest f rame),  Q2 and 
x. These variables may be determined from measure- 
ments of  the electron in the laboratory frame: 

E" 
y = 1 - TE~(1 - cos0e) ,  (2) 

Q2 = 2E~E ' ( I  + cos0e) ,  (3) 

and the relation 

Q2 
x - (4) sy 

In these equations, Ee is the energy of  the incident 
electron, and 0e and E '  refer to the polar  angle and 
energy of  the scattered electron. Angles are defined 
relative to the proton beam direction which is also the 
direction of  the positive Z axis. The X axis points to 
the centre of  the HERA ring. 

Since the hadronic final state is also measured, the 
kinematic properties of  the DIS events can be deter- 
mined in several ways [4]. In particular, in the so- 
called double angle (DA) method, the y, Q2 and x 
variables can be measured using only the angle of  the 
scattered electron and an angle that characterises the 
final state hadronic system (yh). In the naive quark-  
parton model ~'h would be the scattering angle of  the 
struck quark. In general, the angle ?h is given by four- 
momentum conservation in terms of  the transverse 
and longitudinal energy flow of  the hadronic system 
h as 

cos 7h 

( E h P x )  2 + ( E h P r )  2 -  ( E h ( E - P z ) )  2 

(~']~hPx)Z+ (~hPr)2+ ( E h ( E - p z ) )  2 '  

(5) 

where Px and Pr are the transverse momentum com- 
ponents, Pz the longitudinal component  and E the 
energy of  the particles belonging to the system h. As 
the double angle method relies on ratios of  energies 
it is less sensitive to a scale error in the energy mea- 
surement of  the final state particles. 

The variable y can also be defined from the 
hadronic system h as 

~ h  (E - Pz ) (6) 
Y - 2Ee 

This expression is exact when the sum runs over all the 
particles of  h. Since particles emit ted close to the for- 
ward direction contribute little to the above sum, it is 
a good approximat ion in the ZEUS experiment,  which 
covers the full solid angle except for a small inactive 
region to accommodate  the beampipe.  When mea- 
sured in this way, the variable is called YJB (Jacquet -  
Blondel method [5 ] ). 

In the analysis, the sum over particles in equations 
(5) and (6) is replaced by the sum over all calorime- 
ter cells: E is now the energy measured in the cell and 
Px, Pr and Pz are the measured energy mult ipl ied by 
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appropriate angular factors. The angles are measured 
from the ep interaction point to the centre of  the en- 
ergy deposit in each cell. Monte Carlo studies show 
that the error introduced by these approximations is 
small compared to the effect of  the finite energy res- 
olution of  the calorimeter. 

3. The ZEUS detector 

ZEUS is a general purpose, magnetic detector with 
a tracking region surrounded by a high resolution 
calorimeter followed in turn by a backing calorimeter 
and a muon detection system [6]. 

The high resolution, uranium scintillator calorime- 
ter (CAL) [7] is the principal component used in 
this analysis. It is divided into three sections, the 
forward (FCAL), barrel (BCAL) and rear (RCAL) 
calorimeters. For normal incidence, the depth of  the 
CAL is 7 interaction lengths in FCAL, 5 in BCAL and 
4 in RCAL. 

The relative thicknesses of  uranium and scintilla- 
tor in the layer structure were chosen to give equal 
calorimeter response to electrons (or photons) and 
hadrons. Under test beam conditions, the energy 
resolution for electrons was measured [7,8] to be 
a ( E ) / E  = 0.18/x/E and for hadrons a ( E ) / E  = 

0.35/x/E, where E is in GeV. 
Scintillator tiles form towers in depth that are read 

out on two sides through wavelength shifter bars, 
light guides and photomultipliers (PMTs). The tow- 
ers are longitudinally segmented into electromag- 
netic (EMC) and hadronic (HAC) cells. The tow- 
ers in FCAL and BCAL each have two HAC cells 
whereas those in RCAL have one. The depth of  the 
EMC cells is 25 radiation lengths corresponding to 
one interaction length. Characteristic transverse sizes 
are 5 cm × 20 cm for the EMC cells of  FCAL and 
BCAL and 10 cm x 20 cm for those in the RCAL. 
The HAC cells are typically 20 cm x 20 cm in the 
transverse dimension. The towers are read out by a 
total of  11 836 PMTs. 

The construction minimises the possibility for par- 
ticles from the interaction point (IP) to propagate 
down the boundaries between modules. Holes of  
20 cm x 20 cm in the centre of  FCAL and RCAL are 
required to accommodate the HERA beam pipe. The 
resulting solid angle coverage is 99.7% of 4n. 

During the running period more than 97% of all 
PMTs were in operation. Because each cell is read out 
by two PMTs there were never more than six cells 
(0.1%) without operational readout. The calorimeter 
readout provides an energy and a time measurement 
for every PMT. The techniques used for dealing with 
the HERA interbunch time of  96 ns are discussed in 
ref. [9]. 

The gains of  the PMTs were set from test data, 
in particular from the extensive measurements of  the 
CAL modules made at CERN [7] and Fermilab [8]. 
These tests showed that the PMT gains can be set to 
sufficient precision from the signal that comes from 
the natural radioactivity of  the uranium. The overall 
calibration, which was stable at the 0.2% level, was 
monitored frequently, using firstly the uranium signal, 
secondly charge injection to the input of  the readout 
circuits and finally light from light emitting diodes or 
lasers, injected in front of  the photocathodes of  each 
PMT. The latter was also used to set the timing of  all 
of  the PMTs to the 1 ns level of  precision. 

The calorimeter noise, which is dominated by the 
uranium radioactivity, is small: the RMS width of  the 
pedestal was typically 10 MeV for an EMC PMT and 
15 MeV for a HAC PMT. Coherent noise between 
different cells was negligible. Although the noise for 
an individual PMT is small, the large number of  cells 
in the CAL means that some can have noise pulses 
that are large enough to influence the measurement 
of  the kinematic variables at low values of  YJB (see 
section 7). 

Charged panicles were measured by a jet-type 
drift-chamber (CTD) surrounding the beam pipe. 
The CTD consists of  72 cylindrical drift chamber 
layers organised into nine superlayers. The wires in 
the even-numbered supeflayers have small stereo 
angles to allow a three-dimensional reconstruction 
of  tracks. In the other, axial, superlayers the wires 
are parallel to the Z axis. Only the inner three axial 
superlayers were instrumented for this data taking 
period using a Z-by-timing readout [ 10] with single 
wire resolutions of  a z = 4.1 cm and ar~ = 1 mm. 

A thin superconducting solenoid inside the 
calorimeter surrounds the tracking detectors. It has 
an inner diameter of  172 cm, an overall length of 
280 cm and a thickness of  0.9 radiation lengths. For 
the present data it provided a central magnetic field 
of  1.43 T. 
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Two small lead-scinti l lator sandwich counters 
(C5) part ial ly surround the beam pipe at the rear of  
the RCAL. These counters were used to signal back- 
grounds produced by the incoming proton beam and 
to measure the t iming and longitudinal spread of  both 
the proton and electron beams of  HERA. Two layers 
of  scintillation counters mounted  on either side of  
an iron vetowall, si tuated upstream of  the detector, 
were also used to signal background particles. 

The ep luminosi ty was measured from the rate of  
the bremsstrahlung process 

e p ~ e p T ,  (7) 

by tagging the final state electron and photon in coin- 
cidence [6 ]. The luminosi ty moni tor  was also used to 
tag photons from initial state radiat ion and electrons 
from photoproduct ion processes. The integrated lu- 
minosi ty for the present data is 2.1 nb -~ with a sys- 
tematic uncertainty of  ± 14% arising from rate de- 
pendent  random vetos of  the luminosi ty trigger, the 
subtraction of  the beam gas background and the de- 
pendence o f  the acceptance on the posi t ion and angle 
of  the electron beam. 

4. Monte Carlo simulation 

The detector acceptance and performance were 
studied extensively with a Monte Carlo simulat ion 
of  the experiment.  Neutral  current DIS events with 
Q2 /> 2 GeV 2 were generated. The event genera- 
tor used was HERACLES 4.1 [ I I ]  which includes 
electroweak radiat ive corrections to first order. The 
QCD cascade was simulated using the colour dipole 
model  [12] as implemented in ARIADNE 3.0 [13] 
and the soft hadronisat ion process was described by 
the Lund string model, using JETSET 6.3 [ 14]. Vari- 
ous parametr isat ions of  the pa t ton  densities were im- 
plemented:  unless otherwise stated, the comparisons 
shown use the MRSD0 [15] set that fits the latest 
data from the NMC Collaborat ion [16] extending 
down to x = 0.008 at a Q2 value of  about 4 GeV 2 as 
well as new data  from the CCFR Collaborat ion [ 17 ]. 

The detector  simulation, which is based on the gen- 
eral purpose programme GEANT 3.13 [ 18 ], incorpo- 
rates our current knowledge of  the experimental  envi- 
ronment  and trigger. The description of  the responses 

of  the various detector components  was tuned to re- 
produce test data. The CAL noise was simulated ac- 
cording to the measured noise distributions. 

5. Data acquisition and trigger 

HERA has 220 bunches. For  this first running pe- 
riod, in general, only 9 consecutive bunches were filled 
with electrons and protons. In addit ion,  one electron 
or proton bunch circulated without colliding with a 
respective proton or electron bunch. These unpaired 
bunches allow the study of  various backgrounds. The 
electron and proton currents were typically 1-2 mA. 
Since the electron bunch length is small the size of  the 
interaction region (or z N 20 cm) is determined by the 
proton bunch length. 

The data reported here were collected using a trigger 
relying solely on the information from the calorimeter  
and the beam-moni tor  counters (C5). At the present 
luminosity,  of  the three available trigger levels, only 
the first (FLT)  and third (TLT) level trigger stages 
were needed to produce an acceptable trigger rate. The 
TLT uses a farm of  RISC processors. 

For  triggering, the calorimeter  readout was grouped 
into 448 non-overlapping trigger towers having a 
transverse size of  about 20 cm x 40 cm constructed by 
summing the signals from adjacent calorimeter  read- 
out towers. A first-level trigger was issued whenever 
the energy sum in any of  the EMC (or FCAL HAC)  
trigger towers exceeded a programmable  threshold. 
The events of  interest here were predominant ly  trig- 
gered by signals in the EMC sections o f  the RCAL 
and BCAL where the thresholds were set at 2.5 GeV, 
except the towers adjacent  to the RCAL beam pipe 
where a 10 GeV threshold was used. First  level trig- 
gers were vetoed i f  their  signals were in coincidence 
with a signal from the C5 counters that was in t ime 
with the proton beam. The loss of  events due to this 
veto being in coincidence with a DIS trigger was less 
than 10 -3. The total first level trigger rate was 8 Hz. 
The TLT rejected proton beam induced background 
events by a loose cut on the average FCAL and RCAL 
times. About  35% of  the triggers were rejected by this 
cut. It also removed triggers in which an electrical 
discharge in only a single PMT caused the trigger 
condit ions to be satisfied. The output  trigger rate 
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was about 3 Hz for 1 mA of  circulating protons. The 
resulting dead- t ime was less than 0.1%. 

The trigger acceptance for neutral current events 
was studied by Monte Carlo techniques. In general it 
increases with increasing Q2 and is fiat in x. For  x > 
3 x 10 -4 and Q2 > 8 GeV 2 it exceeds 97.5%. 

The efficiency of  the trigger hardware was moni- 
tored with selected data samples and with charge in- 
jection into the front-end electronics of  the calorime- 
ter; less than 3% of  the trigger towers gave no signal. 
For  the interval 10 GeV 2 < Q2 < 100 GeV 2 more 
than 95% of  all events satisfied the RCAL EMC trig- 
ger, where all channels were active. 

The sensitivity to defects of  individual  trigger chan- 
nels was reduced by the fact that a single event can 
exceed more than one of  the trigger thresholds so that 
the overall efficiency of  the hardware was greater than 
99% in all regions o f x  and Q2. The online thresholds 
are low compared to the typical energies of  the scat- 
tered electrons, thus the trigger calibration scale error 
(10%) contr ibuted an uncertainty of  only + 1% to the 
trigger acceptance for Q2 > 10 GeV 2. 

6. Event reconstruction and selection 

In the off-line analysis, hits in the CTD were used 
to reconstruct charged tracks which in turn allowed a 
vertex reconstruction: a valid vertex required at least 
two well measured tracks. Monte Carlo studies indi- 
cate that the vertex resolution in Z is a z = 4 cm 
compared to an rms length of  the interaction region 
of  +20  cm. The measured vertex is used to determine 
the angular coordinates of  the energy deposits in the 
calorimeter.  In cases where a vertex could not be re- 
constructed, all three spatial coordinates were set to 
zero. Since the vertex resolution in the X and Y coor- 
dinates is about 0.6 cm, significantly larger than the 
beam spread of  0.1 ram, these coordinates of  the ver- 
tex were set to zero when angles were calculated. 

In the data analysis, EMC cells with an energy de- 
posit of  less than 60 MeV and HAC cells with less than 
110 MeV were not considered. Cells were also ignored 
if  an individual  PMT contained less than 30 MeV for 
the EMC or 45 MeV in the case of  the HAC. These 
cuts were chosen in order to minimise the influence of  
noise on the measurement  of  the kinematic variables. 

The key signature of  neutral current events is the 
presence of  a scattered electron in the final state. Sev- 
eral electron-identification algorithms have been de- 
veloped. All of  them are based on the small lateral and 
longitudinal spreads in energy deposi t ion expected for 
electromagnetic showers. Hadrons typically produce 
wide showers that extend deep into the calorimeter.  
The algorithms also account for the increase in the 
longitudinal spread when the electron impinges on the 
cracks between CAL modules and the increase in the 
lateral spread caused by preshowering in the inactive 
material  in front of  the CAL. 

The discriminat ion between an electron (or pho- 
ton)  and a hadron is based on the energy weighted 
mean radius of  the EMC energy deposit ions within an 
inner cone and the EMC energy as well as the ratio of 
HAC to EMC energy in an outer cone. After identi- 
fication, all calorimeter energy within the outer cone 
was summed to give the electron energy. When applied 
to neutral current events generated by Monte Carlo 
techniques, the selected algorithm correctly identified 
more than 98% of  all scattered electrons with an en- 
ergy of  more than 5 GeV that were inside the fiducial 
volume of  the detector. 

The posit ion of  the electron was measured from the 
sharing of  the energy between the two PMTs viewing 
the cell containing the maximum energy and, in the 
orthogonal direction, by the energy sharing between 
this cell and those adjacent. The posit ion resolution 
in X (Y) was typically 1.2 (2.1) cm for the RCAL 
leading to an average resolution in polar  angle of  a0o = 
0.5 ° . 

The 1.05 x 1 0  6 events accepted by the trigger were 
passed through a series of  filters to select the small 
number  of  neutral current events that were contained 
in the sample. In order to retain redundancy the first 
stage of  the filter used the combinat ion of  two inde- 
pendent  selections. The first one relied on the EMC 
trigger being satisfied in RCAL (or BCAL). The sec- 
ond selection required an identif ied electron with an 
energy of  more than 4 GeV. These selections retained 
1.4% of  the events. 

An algorithm based on the topology of  cells in a 
single calorimeter section was used to reject cosmic 
rays. The efficiency of  this algorithm was 80%. Monte 
Carlo studies were used to ensure that no neutral cur- 
rent events were lost by applying these cuts. 

After this preselection 12 637 events remained.  
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A large fract ion o f  the beam induced  background 

comes  f rom pro ton  in terac t ions  outs ide  the de tec tor  

region and was r e m o v e d  by a more  ref ined cut  on the 

average R C A L  and F C A L  times. They  were calculated 

as an energy weighted mean  o f  the t imes,  ti, of  those 

P M T s  that  had  an energy Ei  > 200 MeV, The cal- 

ibra t ion was chosen such that  ep events  or ig inat ing 

at the nomina l  in te rac t ion  po in t  give ti = 0. The  re- 

sult ing R C A L  t ime  dis t r ibut ion  has a spread o f  a = 

0.84 ns. The  F C A L  dis t r ibut ion  is somewha t  wider  

(1.2 ns),  reflect ing the length o f  the pro ton  bunch 

in H E R A .  Fig. l a shows the even t  d is t r ibu t ion  in a 

plot  o f  (tv - tR)  versus l R for events  that  give a t ime  

m e a s u r e m e n t  both  in F C A L  and R C A L  (41% of  the 

events ) .  Two  clear, separated clusters o f  events  can 

be seen. The  backgrounds  have  R C A L  t imes  that  are 

early c o m p a r e d  both  to the F C A L  t ime  and to the ab- 

solute t ime  for signals f rom ep in terac t ions  at the IP. 

When  t F and t R were measured,  an event  was accepted  

i f - 6  ns < (tF - tR) < 0.5tR + 6 ns and ItFI, It.I < 
6 ns. All but  three o f  the final DIS events  have  a mea-  

sured t ime  in both F C A L  and RCAL.  The result ing 

acceptance loss o f  DIS events  was less than 0.5%. 

One  c o m p o n e n t  o f  the remain ing  background  

comes  f rom the in teract ion o f  the electron beam 

with the residual gas. Events  or iginat ing f rom the un- 

pa i red  electron bunch but  subject to an R C A L  t ime  

cut, show little or  no energy deposi t  in the FCAL.  

Requ i r ing  an F C A L  energy of  more  than 1 G e V  re- 

moves  all o f  these events  while Mon te  Carlo studies 
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indicate that  only ,,~ 3% of  the DIS events are lost, 
predominant ly  at low y. 

Events containing a vetowall signal and those with 
an energy in the electron calorimeter  of  the luminosity 
detector of  greater than 5 GeV were rejected. 

A cut of  5 GeV on the energy of the candidate 
electron was imposed to reduce the background from 
falsely identif ied hadrons and a fiducial cut around 
the beam pipe of  (IXI, [Y] > 16 cm) at the face of  
the RCAL was imposed to allow an accurate posit ion 
and energy measurement  of  the electron. 

An impor tant  variable that characterises the events 
is the quanti ty ~ defined by 

= ~ ( E - - P z ) i ,  (8) 
i 

where the sum runs over all measured particles. For  ep 
events where all final state particles are measured, ~ = 
2Ee. Undetected particles which are emitted down the 
forward beam pipe give a negligible loss. Initial  state 
radiat ion moves events to lower values and measure- 
ment  errors lead to a broadening of  the distribution. 

Different final states produce different ~ distribu- 
tions, so that it is a good discr iminator  against back- 
ground processes. Photoproduct ion events in which 
the scattered electron stays in the beam pipe, but 
which are selected because an energy deposit  has been 
falsely interpreted as the scattered electron, will pre- 
dominant ly  give low values of  ~. Background events 
coming from interactions of  the proton beam also 
have small values of  ~. 

Fig. lb  shows the distr ibution in ~ calculated from 
the energies measured in the CAL towers. The pre- 
selected events, shown in the upper curve, have a 
broad shoulder at the posit ion expected for DIS events 
superimposed on a large falling background. Most of  
this background is removed by the t iming and FCAL 
energy cuts and a clear two peak structure then ap- 
pears, as seen in the shaded area. The accumulation 
of  events at low values of  ~ is well separated from the 
distr ibution of  DIS events and was removed by the 
selection: 35 GeV < ~ < 60 GeV. The lower value is 
in the region separating the two peaks and the upper 
cut allows for resolution smearing. 

The effect of  each of  the rejections was carefully 
studied, in part icular  by a visual inspection of  a sam- 
ple of  the rejected events. In a scan of  the finally se- 
lected event sample, five remaining cosmic and beam 

muons were identified and removed. After these se- 
lections 305 events remained. None came from an un- 
paired electron or proton bunch. 

No requirement has been placed on the vertex re- 
constructed from the CTD tracks. Although most of  
the electrons are outside of  the acceptance of  the CTD, 
an event vertex can be reconstructed from the charged 
hadrons in 58% of  the events. A vertex was recon- 
structed in 55% of  the Monte Carlo events, in satisfac- 
tory agreement with the data. The major  contr ibution 
to this inefficiency is due to the fact that events at low 
y show no activity in the CTD. In the final event sam- 
ple, with YJB > 0.02, 80% of  the events have a recon- 
structed vertex. The distr ibution of  reconstructed Z 
vertices for the preselected events is shown in fig. lc. 
Two clear peaks can be seen, the one at negative Z 
values from background processes and the accumu- 
lation near Z = 0 coming from ep scattering (e.g., 
DIS and photoproduct ion) .  The vertex distr ibution 
for the final event sample is shown shaded. The width 
is consistent with that expected from the known pro- 
ton bunch length. 

The photoproduct ion background was esti- 
mated by generating photoproduct ion events using 
PYTHIA [ 19], and passing them through the com- 
plete analysis chain. This study predicted that for a 
total 7p cross section of  154/zb [6 ] and our integrated 
luminosity the data sample is expected to contain 
four such events, approximately one quarter of  which 
should have an electron in the luminosity moni tor  
with energy greater than 5 GeV. Our  observation of 
one such electron is consistent with this Monte Carlo 
estimate. We therefore take this background to be 
4 :k 2 events. 

7. Results 

Fig. 2 compares some properties of  the selected 
events with the predictions of  the Monte Carlo sim- 
ulation. The data are shown as points with statistical 
errors and the simulation as the shaded histograms. 
The distr ibutions in electron energy and angle are 
shown in figs. 2a and b. While the angular distribu- 
tion, mostly a consequence of  the 1/Q 2 of the pho- 
ton propagator,  is well described by the Monte Carlo, 
the posit ion of  the peak in the measured electron en- 
ergy spectrum is shifted to lower values than expected. 
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Fig. 2. Comparisons of the data with the Monte Carlo simulation: (a) electron energy, (b) electron angle, (c) A~b, (d) YJa, 
(e) electron energy calculated from 0e and 7h, and (f) hadron angle. The data are shown as the points with statistical errors 
and the Monte Carlo simulation as the histograms. A cut ofyja > 0.02 has been applied to plots (e) and (f). 

We at tr ibute this effect pr imari ly  to present l imita- 
tions of  the geometry modelling, especially of  inactive 
material  between the interaction point  and the front 
of  the calorimeter,  in the Monte Carlo code. Despite 
this l imitat ion,  the overall characteristics of  the events 
are well reproduced.  For  example, the electron and 
hadron energy flows are back to back in the transverse 
plane, as seen in fig. 2c which shows the dis tr ibut ion 
in the difference between the azimuthal  angles (~) of 
the electron and the hadronic system. 

Fig. 2d shows the distr ibution in YJB. There is good 
agreement between data  and Monte Carlo even at the 
smallest values of  Y~B, which are sensitive to CAL 
noise. For  the remaining distr ibutions events with 
YJB < 0.02 are removed since the resolution in kine- 
matic variables deteriorates significantly in this re- 

gion and the measurements suffer from systematic bi- 
ases coming from the effects of  noise and the finite 
segmentation of  the calorimeter.  

The energy of  the final state electron can also be 
calculated from the angles 0e and 7h using the equation 

, sin ~h 
EDA = 2Ee sin 7h + sin 0e - sin(0e + ~h)" (9) 

The distr ibutions in E~A are shown in fig. 2e. The 
data exhibit a kinematic peak in agreement with the 
simulation. The distr ibution in Yh, shown in fig. 2f, 
also gives satisfactory agreement with the Monte Carlo 
simulation. 

The variables x and Q2 are now determined from 
0e and 7h and fig. 3a shows the distr ibution of  events 
in the (x, Q2) plane. The lines of  constant y values 
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Fig. 3. (a) The distribution of events in the (x, Q2) plane. (b) The Q2 distribution of the events. (c) The x distribution 
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MRSD0 parametrisation. (d) The measured differential Born cross sections, in the selected (x, Q2) ranges indicated in (a), 
compared to the extrapolations of three parton density functions: MTB l, MTB2 and MRSD0. 

of  0.01, 0.1 and 1.0 are indicated. The projections of  
the data in x and Q2, shown in figs. 3b and 3c, are in 
satisfactory accord with the Monte Carlo simulation. 
Although the events are predominant ly  at low values 
of  Q2, overlapping the Q2 range o f  previous experi- 
ments, the present data  extend about two orders of  
magnitude lower in x than has previously been stud- 
ied. 

In measuring the cross sections it is important  to 
choose regions in the (x, Q2) plane where the accep- 
tance is both uniform and high. Three Q2 bins: l 0  < 
Q2 < 20, 20 < Q2 < 40, 40 < Q2 < 100 GeVEand 

two x ranges: 0.0005 < x < 0.0015 and 0.0015 < 
x < 0.008 were chosen as indicated in fig. 3a. These 
choices were dictated by the resolution which is bet- 

ter than 40% for x and 25% for Q2. In these bins the 
acceptance varies from 70% for the low Q2 bin, which 
is affected by the YJB > 0.02 cut, to 93% for the high- 
est Q2 bin. The total corrections for acceptance and 
migration due to the finite x and Q2 resolution were 
less than 20% and were insensitive to the choice of 
the parton density distribution. The data were cor- 
rected for these effects. In order to take into account 
QED radiat ive effects a conversion was made to the 
lowest order (Born) cross section using the MRSD0 
pat ton density distribution. This was done by calcu- 
lating the correction factors both with the radiat ive 
effects turned on and with them turned off. The sta- 
tistical errors of  the present data preclude an i terative 
procedure for this conversion. 
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Fig. 3d shows the cross section values. The lines 
are the Born cross sections calculated from extrapo- 
lations of three parton density sets, MRSD0, MTB1 
and MTB2 [20], into this new kinematic region. In 
these calculations, the contribution from the longitu- 
dinal structure function, FL, was ignored. Although 
QCD predicts that FL is large in some regions of the 
kinematics, the effect is at most 2% in the (x, Q2) re- 
gions used in determining the cross sections. This ef- 
fect is included in the overall systematic error. There 
is good agreement with all three parametrisations at 
the present precision of the experiment. 

The inner error bars shown on the cross sections are 
statistical, while the outer error includes a linear ad- 
dition of the estimated systematic effects that we now 
discuss. The errors do not include the overall scale un- 
certainty of 14% from the luminosity measurement. 

The sensitivity of the cross sections to the cuts was 
checked by relaxing them individually within reason- 
able limits. The cross sections were also measured us- 
ing other techniques to determine x and Q2. In the 
selected (x, Q2) bins, 80% of the events have a recon- 
strncted vertex. Cross sections determined from this 
fraction alone are in excellent agreement with those 
measured from the full sample. The error introduced 
by using the MRSD0 parametrisation for the extrac- 
tion of the Born cross section was estimated by also de- 
termining the conversion using the MTB i and MTB2 
parton density distributions. The resulting systematic 
errors are between 15% and 25%, depending on the 
Q2 value, dominated by the uncertainty in the con- 
version to the Born cross section. 

8. Conclusions 

This paper presents our first study of neutral current 
deep inelastic ep scattering. The events were observed 
in a full solid angle detector so that both the electron 
and the secondary hadrons could be used to charac- 
terise the events. The ZEUS detector, in particular 
the high resolution calorimeter, allows the selection 
of DIS events with very little background. The mea- 
surement of the scaling variables can be made using 
several techniques. Within the statistics of the present 
analysis, the distributions in the scaling variables and 
the cross sections in selected (x, Q2) bins are in ac- 
cord with extrapolations of current parametrisations 

ofparton densities. In the measured Qz range the data 
extend to values of x which are two orders of magni- 
tude smaller, than previously reached by fixed target 
experiments. 
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