Plant and Soil 2014 vol.387 N1-2, pages 265-275

Effect of plant communities on aggregate composition and organic matter stabilisation in young soils

Gunina A., Ryzhova I., Dorodnikov M., Kuzyakov Y. Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

© 2014, Springer International Publishing Switzerland. Results: Deciduous forest soil accumulated the highest C content in the 0-5 cm layer (43 g C kg-1), whereas values in coniferous forest and arable soils were lower (30 and 12 g C kg-1, respectively). The highest portion of C in arable soil was accumulated in the mineral fraction (80 %), whereas 50-60 % of the C in forest soils were in POM. More C was associated with minerals in deciduous forest soil (16 g C kg-1 soil) than under coniferous forest and arable land (8-10 g C kg-1 soil). Conclusions: Particulate organic matter explains most of the differences in organic C accumulation in soils developed during 45 years under the three vegetation types on identical parent material. The C content of the mineral soil fraction was controlled by plant cover and contributed the most to differences in C accumulation in soils developed under similar vegetation type (forest). Objectives: Carbon (C) content in pools of very young soils that developed during 45 years from loess was analysed in relation to vegetation: deciduous and coniferous forests and cropland. We hypothesised that variations in the amount of particulate organic matter (POM) can explain the C accumulation and also affects the C bound to mineral surfaces in soil under various vegetation. Methods: Soil samples were collected under three vegetation types of a 45-year-old experiment focused on initial soil development. Aggregate and density fractionations were combined to analyse C accumulation in large and small macro- and microaggregates as well as in free and occluded POM and mineral factions.

http://dx.doi.org/10.1007/s11104-014-2299-y

Keywords

Aggregate turnover, Carbon accumulation rates, Carbon sequestration, Initial soil formation, Organic matter stabilisation, Young soils