Physical Review Letters 2010 vol.104 N24

CdEr2Se4: A new erbium spin ice system in a spinel structure

Lago J., Živković I., Malkin B., Rodriguez Fernandez J., Ghigna P., Dalmas De Réotier P., Yaouanc A., Rojo T.

Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

Here we present a detailed study of the spinel CdEr2Se4 and show it to be a new instance of spin ice, the first one in an erbium material and the first one in a spinel. Definitive experimental evidence comes from the temperature dependence of the magnetic entropy, which shows an excellent agreement with the predicted behavior for a spin ice state. Crystal field calculations demonstrate that the change in the local environment from that of the titanates completely alters the rare-earth anisotropy giving rise, in the case of Er3+, to the required Ising anisotropy, when Er2Ti2O7 behaves as an XY antiferromagnet. This finding opens up the possibility of new exotic ground states within the CdR2Se4 and CdR2Se4 families. © 2010 The American Physical Society.

http://dx.doi.org/10.1103/PhysRevLett.104.247203