Pflugers Archiv European Journal of Physiology 2009 vol.458 N3, pages 563-570

The mechanisms of multi-component paired-pulse facilitation of neurotransmitter release at the frog neuromuscular junction

Mukhamedyarov M., Grishin S., Zefirov A., Palotás A. Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

We have studied the mechanisms of paired-pulse facilitation (PPF) of neurotransmitter release in isolated nerve-muscle preparations of the frog cutaneous pectoris muscle. In normal extracellular Ca2+ concentration ([Ca2+]o, 1.8 mM), as the interpulse interval was increased from 5 to 500 ms, PPF decayed as a sum of two exponential components: a larger but shorter first component (F1) and a smaller but more prolonged second component (F2). In low [Ca2+]o (0.5 mM), both F1 and F2 increased, and a third "early" component (Fe) appeared whose amplitude was larger and whose duration was shorter than F1 or F2. In the presence of the "fast" Ca2+ buffer BAPTA-AM, Fe disappeared, whereas F1 and F2 decreased in amplitude and duration. In contrast, the "slow" Ca2+ buffer EGTA-AM caused a decrease of Fe and reduction or complete blockade of F2, without any changes of F1. In solutions containing Sr2+ (1 mM), the magnitude of Fe was decreased, F1 was significantly reduced and shortened, but F2 was unaffected. Application of the calmodulin inhibitor W-7 (10 µM) at normal [Ca2+]o produced a marked decrease of F2, and at low [Ca2+]o, a complete blockade of Fe. These results suggest that PPF at frog motor nerve terminals is mediated by several specific for different PPF components intraterminal Ca2+ binding sites, which trigger neurotransmitter release. These sites have a higher affinity for Ca2+ ions and are located farther from the release-controlling Ca2+ channels than the Ca 2+ sensor that mediates phasic release. © 2009 Springer-Verlag.

http://dx.doi.org/10.1007/s00424-009-0641-7

Keywords

Calmodulin, Neuromuscular junction, Neurotransmitter release, Paired-pulse facilitation, Shortterm synaptic plasticity