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Abstract. The strong coupling constant, as, has been de- 
termined in hadronic decays of  the Z ~ resonance, using 
measurements of  seven observables relating to global 
event shapes, energy correlations and jet rates. The data 
have been compared with resummed QCD calculations, 
which are combined with the ~ ( a s  2) theory. The seven 
measurements agree to about  10%, and the final result, 
based on a weighted average, is: 

as (Mzo) = 0.120 • 0.006, 

where the error includes both experimental and theoreti- 
cal uncertainties. This value corresponds to renormali- 
zation scale p = Mzo and the error includes the uncer- 
tainty in this choice of  scale. The present measurement 
complements previous determinations using the ~ ( a ~ )  
QCD matrix elements alone, and yields a compatible 
result, with comparable errors. 

1 Introduction 

The measurement of  the strong coupling constant, as, is 
a basic test of  the strong interaction sector of  the Stan- 
dard Model, Quantum ChromoDynamics (QCD) [1 ]. The 
predictions of  QCD are governed by just one fundamen- 
tal coupling strength. It is therefore important  to measure 
as in as many  different ways as possible, since consistency 
between the measurements would serve as a test of  the 
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theory. Knowledge of the value of as and an understand- 
ing of QCD are also important  ingredients of  many elec- 
troweak tests at LEP. Furthermore,  an accurate deter- 
mination of a s is an important  constraint in speculations 
about unification of  the electroweak and strong inter- 
actions at very high energies (see e.g. [2] and references 
therein). 

The conventional method by which a s has been de- 
termined involves comparing experimental data with 
QCD calculations based on an order-by-order expansion 
in powers of  a s. In the case of  the process e + e -  ~ hadrons 
the QCD matrix elements are fully known to G ( a ~ )  [3], 
corresponding to final states containing no more than 
four partons. Predictions for the distributions of  many 
observables to G ( a s  2) based on these matrix elements 
have been given in [4]. In a recent publication [5] the 
OPAL collaboration determined as(Mz0)  from 13 dif- 
ferent observables in G (as2), and after making reasonable 
estimates of  experimental and theoretical uncertainties 
found that the values were compatible. The final uncer- 
tainty on the value of as(Mzo) was about  5%, the ac- 
curacy being mainly limited by theoretical uncertainties, 
particularly relating to higher order effects and hadroni- 
zation. Other measurements of  a S at LEP to • (a 2) have 
been presented in [6-17]. Measurements of  as at LEP to 

(a 3) using the total hadronic cross-section and the had- 
ronic decays of  the r-lepton are summarised in [18, 19]. 

This standard procedure, based on the ~ ( a s  2) matrix 
elements, is unsuccessful in describing the back-to-back 
two-jet regio n of  phase space. In this region multiple 
emissions of  soft gluons may be expected to be important.  
An alternative approach may be taken to the QCD cal- 
culations of  hadronic final states in e+e - annihilations, 
based on the resummation of leading logarithms which 
arise f rom soft and collinear singularities in gluon emis- 
sion. The consequence is that the effective expansion pa- 



rameter is not simply as, but as L2 (to leading order in 
L), where L = In (1 /y)  and y is some generic observable 
which tends to zero in the two-jet region. At small y the 
value of~s L 2 is not small, and therefore these terms must 
be summed to all orders in ~s in order to provide a sat- 
isfactory calculation. For certain observables it has 
proved possible to sum both the leading and next-to- 
leading logarithms, which we refer to as the "Next-to- 
leading log approximation" or NLLA. In the present pa- 
per we consider seven observables describing the final 
state in e+e - --,hadrons for which NLLA calculations 
are available: thrust [20, 21], heavy jet mass [22, 21], two 
measures of jet broadening [23], energy-energy correla- 
tions [24, 25], two-jet rates [26] and average jet multi- 
plicities [27] (though in the latter two cases the next-to- 
leading terms have been only partially resummed). First 
results using the thrust and heavy jet mass observables 
were given in a previous OPAL paper [5], and other 
analyses of LEP data in the NLLA framework have been 
presented in [28-30]. A recent compilation of measure- 
ments of ~s based on both the ~y(~2) and the NLLA 
approaches is given in [18]. 

The NLLA calculations are expected to be most re- 
liable in predicting the patton distributions in the two- 
jet region. Unfortunately this region is subject to partic- 
ularly large hadronization effects, which introduce sig- 
nificant uncertainties when confronting the theory with 
data. We therefore do not determine ~s simply from the 
NLLA calculations. Instead the NLLA calculation is 
combined with the G(~ 2) matrix element approach to 
provide a calculation which includes the full knowledge 
of the ~Y(~) terms, together with the leading and next- 
to-leading logarithmic parts of the higher order terms in 
~s. One expects that this will provide a more complete 
calculation than either the ~y(~2) or the NLLA approach 
separately, and might therefore allow a reduction in the 
systematic error in ~s. We explore this possibility in the 
present paper. By applying the method to a wider range 
of observables than has hitherto been possible we can 
look for consistency between the different values of 0~s 
obtained, which will give an indication of the reliability 
of this approach to the QCD calculations. By comparing 
the results with those from the conventional ~Y(0~ 2) tech- 
nique we hope to gain further insight into higher order 
effects. 

The present paper is organized as follows: a brief ac- 
count of the OPAL detector and the data selection pro- 
cedures is given in Sect. 2, and the observables used and 
the methods adopted for correcting the data are described 
in Sect. 3. The application of the NLLA and ~(0~ 2) QCD 
calculations to the determination of ~ is presented in 
Sect. 4. Finally Sect. 5 contains a summary and some dis- 
cussion of the results. 

2 The OPAL detector and data selection 

A detailed description of the OPAL detector has been 
presented in [31], and therefore only a short account of 
some of its features relevant to the present analysis will 
be given here. 

The momenta of charged particles are measured in the 
central tracking detectors. For this analysis we use three 
drift chamber systems. A precision vertex chamber, of 
radius 24 cm and length 100 cm provides space points 
with resolution about 50 ~tm in the r -~b plane*. This is 
surrounded by a large jet chamber, of radius 185 cm and 
length about 400 cm, which provides up to 159 digitiza- 
tions with an r - ~ resolution of around 130 ~tm. Outside 
this lies a system of z-chambers, to improve the resolution 
in 0. The central detector lies within an axial magnetic 
field of 0.435 T. 

The electromagnetic calorimeter consists of a barrel 
of 9440 lead glass blocks oriented so that they nearly 
point to the interaction region, and two endcaps of 1132 
lead glass blocks each, aligned along the z-axis. Each 
block subtends approximately 40 • 40 mrad 2 at the origin, 
and the overall coverage is about 98% of 4 n. In addition 
to measuring the energies of electrons and photons, the 
electromagnetic calorimeter records a significant fraction 
of the energy of charged and neutral hadrons. 

The OPAL trigger [32] has a high degree of redun- 
dancy, so that the efficiency for accepting multi-hadronic 
events is extremely high, greater than 99.9%. The online 
filter and offline selection procedures are described in 
[33, 34], and are again highly efficient. For the present 
analysis further cuts were applied to remove residual 
background and provide a sample of well contained 
events. The collision energy was required to lie within 
0.5 GeV of the Z ~ mass, and those parts of the detector 
essential for the present analysis (central detector and 
electromagnetic calorimeter) were required to be fully 
operational. Charged tracks accepted for this analysis 
were required to satisfy the following criteria: transverse 
momentum with respect to the collision axis greater than 
0.15 GeV/c, at least 40 reconstructed points in the jet 
chamber, extrapolation to the collision point within 2 cm 
in r -q5  and 25 cm in z and measured momentum less 
than 60 GeV/c. The number of such tracks was required 
to be at least five to reduce 7 + r -  background. Clusters 
of electromagnetic energy were used if their observed en- 
ergy was greater than 0.25 GeV, and known noisy chan- 
nels in the detector were removed. The thrust axis 
(Sect. 3.1) was determined using all tracks and clusters 
satisfying these criteria, and required to fulfil the con- 
dition [cos 0 [ < 0.9 in order that the event be well con- 
tained. Using these selection criteria, Monte Carlo studies 
indicate that, within the chosen range of cos0, 
99.86 • 0.07% of hadronic Z ~ decays are accepted, with 
a contamination of about 0.14% from 7+r  - events, and 
around 0.07% from two-photon interactions. Using the 
OPAL data collected in 1990 and 1991 a data sample of 
336 247 events remained for analysis after these cuts. 

* The OPAL coordinate system is defined so that z is the coordinate 
parallel to the e- beam, r is the coordinate normal to this axis, 0 
is the polar angle with respect to z and ~b is the azimuthal angle 
about the z-axis 



3 Experimental  procedure 

3.1 The observables used for analysis 

Our determination of as is based on meausrements of  the 
following variables, for all of  which resummed QCD cal- 
culations are available: 

Thrust: The thrust T is defined [35] by 

T = m a x  ~k ~ ; (1) 

where i runs over all the final state particles, and the axis 
fi is chosen the maximize the value of the expression in 
parentheses; this axis fir is referred to as the thrust axis. 
In the present analysis we use the observable ( 1 -  T), 
which tends to zero in the two-jet region. 

Heavy jet mass: This variable has been proposed in [36]. 
We divide the particles in an event into two groups by 
the plane orthogonal to the thrust axis, fiT, and compute 
the invariant mass of each group. We define the heavier 
mass to be M H. For  the determination of as we use the 

scaled variable MI~/[/~, where s is the square of the cen- 
tre-of-mass energy. In our previous publication [5] we 
also considered an alternative way of separating the par- 
ticles into two groups. It transpired that the results from 
the two approaches, including all their systematic errors, 
were virtually identical, so in the current study we use 
only the simpler method based on the thrust axis. To first 
order in es the heavy jet mass and thrust are related by 
(1 - T) = M~/s. 

Jet broadening measures." These observables have been 
suggested in [23]. Again the event is divided into two 
hemispheres, S•  by the plane orthogonal to the thrust 
axis, fir. In each hemisphere, the quantity: 

B+ - i~ s• (2) 
2 Z [Pi[ 

i 

is computed, where the sum in the denominator runs over 
all particles, whilst that in the numerator runs over one 
hemisphere. The observables used for the study of  ~ are 

B T = B  + + B _  and Bw=max(B+,B_),  (3) 

referred to as the "total jet broadening" and "wide 
jet broadening" respectively. To leading order in as, 
BT=Bw=�89 (where O is the oblateness [37]). Both 
B r and Bw tend to zero in the two-jet region. These 
variables are sensitive to the transverse structure of jets, 
and may therefore be complementary to ( 1 -  T) and 
MH/[/~, which are more dependent on the longitudinal 
momenta. 

Energy-energy correlation. The energy-energy correlation 
function 2TEE c [38] is defined in terms of the angle Xo 
between two particles i and j in a multihadronic event: 

1 x+k~x EiEj 
XEEC(X)=Ax. N Z I ~ Eg2is 

N X - - I A X  ' " 

�9 O (g '  - X;j) d z ' ,  (4) 

where E i and Ej are the energies of  particles i and j ,  Evi s 
is the sum over the energies of  all particles in the event, 
A)~ is the angular bin width and N is the total number 
of events. The normalization ensures that the integral of 
XEEC(Z ) from X =0 ~  to 180 ~ is unity. 

Jet rates: For the present analysis we define jets through 
the "Durham" scheme [26, 39, 40]. A jet resolution 
variable Yij is defined for each pair of  particles i and j 
by: 

2 min (E~, E l )  (1 -- cos 0o) 
Y'J - E L  ' ( 5 )  

where E i and E s are the energies of the two particles or 
jets i and j ,  Oij is the angle between them and Evi s is again 
the sum over the energies of all particles in the event. If  
the smallest value of Yo is smaller than some cutoff 
Your then particles i and j are replaced by the sum of their 
four-momenta. The process is repeated until all remaining 
pairs satisfy Yo >Ycut, and the groups of  particles at this 
stage are called "jets". Resummed QCD calculations are 
available for two observables related to these jet rates; 
the two-jet rate: 

R2 _ 0 " 2 - j e t  

O" t o t  

and the average number of jets: 

oo 

M/'- 1 ~, na,-jet 
O ' t o t  n = 2  

as a function of Ycut in both cases. When performing fits 
to the data we have used the differential jet rate 
D2 (Y~ut) = dR2 (Ycut)/dyout instead of R 2. 

3.2 Correction of data 

The observables described above were calculated from 
the data using both charged tracks and clusters of elec- 
tromagnetic energy. A Monte Carlo simulation of the 
OPAL detector [41] was then used in order to correct for 
experimental resolution and acceptance. In this correc- 
tion the effects of initial state photon radiation were also 
removed, although these effects are small since only data 
at the Z ~ peak energy were used. The data were further 
corrected for the effects of hadronization using QCD par- 
ton shower Monte Carlo models. The procedure closely 
followed [42]. The simplest technique employed bin-by- 
bin correction factors. Two Monte Carlo samples were 
used: a sample (I) with no initial state photon radiation 
and no detector simulation, and a sample (II) using the 
same Monte Carlo but including detector simulation and 
initial-state radiation. The QCD parton shower model 
JETSET [43], version 7.3, with parameters tuned to 
OPAL data on global event shapes [42], was used to 



derive the default correction factors. The events of sample 
(II) were processed by the same reconstruction programs 
and subjected to the same event selection cuts as the real 
data. Defining ~ to be the value of the quantity which 
is being investigated (e.g. the normalized differential 
cross-section) in bin i of a distribution for sample (I), 
and ~@'i to be the corresponding quantity for the events 
which survive after event reconstruction and selection, in 
sample (II), the correction factor ~ for bin i is then 
given by ~ =  5~i / .@'~. The experimental measurement, 
for bin i of the distribution, is corrected by multiplying 
it by the factor ~ .  The distribution for the Monte Carlo 
sample (I) may be computed using the stable particles 
(those with lifetimes greater than 3.10 -1~ s), in which 
case the procedure corrects only for detector effects, and 
we refer to these as data corrected to the hadron level. 
Alternatively, if the partons in sample (I) are used instead 
then the correction procedure accounts for both detector 
effects and hadronization, and we refer to these as data 
corrected to the parton level. We use the expression de- 
tector level to refer to the uncorrected data. 

As discussed in [42], this simple bin-by-bin correction 
procedure is reliable only if the bin width selected for the 
data is greater than or comparable with the experimental 
resolution, so that migration between bins is small. In 
the case of the event shape variables (1 - T), MH, BT and 
B W the effective resolution resulting from hadronization 
and detector effects is quite large, which requires that a 
large bin width be employed in the bin-by-bin procedure. 
Therefore an alternative approach was adopted for these 
observables in order to be able to use a somewhat finer 
binning. Using the events in sample (II) which pass the 
selection criteria at the detector level, one can compute 
the matrix P, in which the element P:; gives the proba- 
bility that an event in bin i at the hadron (or patton) 
level is found to lie in bin j when the detected tracks and 
clusters are used. Then, if C~ is the number of events in 
bin i at the hadron (or parton) level, we may infer the 
probability Qi: that an event found in bin j at the detector 
level originated from bin i at the hadron (or parton) level: 

P]i Ci 
aij -- Z P:k Ck" (6) 

k 

Table 1. Distributions of the variables defined in the text. The data are corrected for the finite acceptance and resolution of the detector 
and for initial state photon radiation. No corrections for hadronization effects are applied. The errors include statistical and experimental 
systematic uncertainties, added in quadrature 

1 d a  
1 - T)  

a d T  

<005 
1.015 
1.025 
<035 
1.045 
<055 
<065 
<075 
<085 
<095 
<105 
<115 
<125 
1.135 
1.145 
1.155 
1.165 
<175 
1.185 
<195 
<205 
<215 
1.225 
<235 
1.245 
<255 
<265 
<275 
<285 
<295 
1.305 
1.315 
<325 
1.335 
1.345 

1.36 • 
11.81 • 
18.42 • 
14.38 +0.12 
10.03 4-0.16 
7.33 • 
5.62 • 
4.57 • 
3.76 • 
3.14 • 
2.64 • 0.08 
2.22 • 
1.90 • 
1.67 • 
1.44 • 
1.26 • 
1.12 • 
0.979 • 0.042 
0.872 • 0.037 
0.781 • 0.036 
0.672 • 0.031 
0.599 + 0.028 
0.550 • 0.028 
0.471 • 0.024 
0.413 • 0.021 
0.373 • 0.020 
0.346 • 0.022 
0.300 • 0.020 
0.250 • 0.018 
0.214 • 0.013 
0.192 + 0.014 
0.150• 
0.119• 
0.102• 
0.068 • 0.005 

1 d a  

a d (Mn/l~) 

0.02 0.009 • 0.007 
0.05 0.075 • 0.009 
0.07 0.182 • 0.028 
0.09 0.915 • 0.097 
0.11 3.10 • 
0.13 5.88 • 
0.15 7.00 • 
0.17 6.19 +0.06 
0.19 4.88 • 
0.21 3.87 • 0.06 
0.23 3.19 • 
0.25 2.66 • 0.06 
0.27 2.25 • 0.06 
0.29 1.87 +0.06 
0.31 1.58 • 
0.33 1.32 • 
0.35 1.09 • 
0.37 0.92 • 0.05 
0.39 0.77 • 0.05 
0.41 0.60 +0.04 
0.43 0.490 • 0.032 
0.45 0.384 • 0.026 
0.47 0.307 • 0.022 
0.49 0.223 • 0.016 
0.51 0.154• 0.012 
0.53 0.094 • 0.008 
0.55 0.052 • 0.004 
0.57 0.019 • 0.002 

1 da 
BT 

a dB T 

0.01 0.028 • 
0.025 0.31 • 
0.035 2.28 +0.45 
0.045 6.83 • 0.90 
0.055 10.49 + 0.75 
0.065 11.26 +0.32 
0.075 9.98 • 0.07 
0.085 8.46 • 
0.095 7.06 • 0.21 
0.105 6.02 • 
0.115 5.17 • 
0.125 4.46 • 
0.135 3.83 +0.16 
0.145 3.34 • 
0.155 2.94 • 
0.165 2.51 +0.10 
0.175 2.23 • 
0.185 1.99 • 
0.195 1.70 • 
0.205 1.52 • 
0.215 1.32 • 
0.225 1.13 • 
0.235 1.00 -t-0.05 
0.245 0.84 • 0.05 
0.255 0.75 • 0.04 
0.265 0.641 • 0.034 
0.275 0.546 • 0.030 
0.285 0.459 ! 0.024 
0.295 0.364• 
0.305 0.284• 
0.315 0.201 -J- 0.015 
0.325 0.152• 
0.335 0.089 • 0.005 
0.345 0.044 • 0.003 

Bw 
1 da  

a dB W 

0.005 0.04 • 0.03 
0.015 0.96 • 
0.025 10.33 • 
0.035 17.20 +0.76 
0.045 13.65 • 
0.055 10.36 +0.13 
0.065 8.31 +0.18 
0.075 6.70 • 
0.085 5.46 • 
0.095 4.56 • 
0.105 3.84 • 
0.115 3.23 • 
0.125 2.73 • 
0.135 2.31 • 
0.145 1.97 +0.09 
0.155 1.65 • 
0.165 1.40 • 
0.175 1.18 • 
0.185 0.99 +0.06 
0.195 0.83 • 
0.205 0.67 • 0.05 
0.215 0.53 • 
0.225 0.439 • 0.030 
0.235 0.344 • 0.025 
0.245 0.244 • 0.018 
0.255 0.157• 
0.265 0.094 • 0.006 
0.275 0.039 • 0.004 
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Table 1 (continued) 

Z (deg.) 2TEE c Z (deg.) .~V'EE C 

0.9 3.24 • 
2.7 1.30 i0.03 
4.5 1.38 _0.03 
6.3 1.197 • 0.016 
8.1 0.9743-0.017 
9.9 0.796 -t- 0.019 

11.7 0.661 4-0.019 
13.5 0.553 • 0.016 
15.3 0.461 • 
17.1 0.390 • 0.011 
18.9 0.334 • 0.011 
20.7 0.289 • 0.010 
22.5 0.255 • 0.011 
24,3 0.227 • 0.009 
26.1 0.206 + 0.007 
27.9 0.188 • 0.007 
29.7 0.174 • 0.007 
31.5 0.161 • 0.006 
3 3 . 3  0.150• 
35.1 0.141 • 
36.9 0.133 • 0.005 
38.7 0.127 • 0.004 
40.5 0.121 5:0.004 
42.3 0.116 • 0.004 
4 4 . 1  0.110• 
45.9 0.106 • 0.003 
47.7 0.102 • 0.003 
49.5 0.099 • 0.002 
51.3 0.096 • 0.003 
53.1 0.093 • 0.002 
54.9 0.091 • 0.003 
56.7 0.089 • 0.002 
58.5 0.087 • 0.002 
60.3 0.085 4- 0.003 
62.1 0.083 • 0.003 
63.9 0.081 • 0.003 
65.7 0.081 • 0.003 
67.5 0.079 • 0.003 
69.3 0.078 • 0.002 
71.1 0.077 • 0.002 
72.9 0.076 • 0.002 
74.7 0.076 • 0.002 
76.5 0.075 • 0.002 
78.3 0.075 • 0.002 
80.1 0.075 • 0.002 
81.9 0.075 • 0.002 
83.7 0.074 • 0.002 
85.5 0.074 • 0.002 
87.3 0.074 • 0.001 
89.1 0.075 • 0.002 

90.9 0.076 • 0.002 
92.7 0.076 • 0.002 
94.5 0.076 • 0.002 
96.3 0.078 • 0.002 
98.1 0.078 • 0.002 
99.9 0.079 • 0.003 

101.7 0.080+0.002 
103.5 0.082 • 0.002 
105.3 0.083 • 0.002 
107.1 0.085 • 0.002 
108.9 0.087 + 0.002 
110.7 0.089 + 0.002 
112.5 0.091 • 
114.3 0.094• 
116.1 0.096 • 0.003 
117.9  0.099• 
119.7 0.1024-0.002 
121.5 0.107• 
123.3 0.110• 
125.1 0.116• 
126.9 0.121 • 0.004 
128.7 0.125• 
130.5 0.131 4-0.003 
132.3 0.138• 
134.1 0.146 • 0.003 
135.9 0.155+0.004 
137.7 0.164• 
139.5 0.174• 
141.3 0.186 • 0.003 
143. I 0.200 • 0.004 
144.9 0.213 • 0.002 
146.7 0.230 • 0.002 
148.5 0.250 • 0.003 
150.3 0.272• 
152.1 0.299 • 0.003 
153.9 0.329• 
155.7 0.365 • 0.005 
157.5 0.410• 
159.3 0,457• 
161.1 0.521 • 0.006 
162.9 0.595• 
164.7 0.682• 
166.5 0.783 • 0.007 
168.3 0.906 • 0.008 
170.1 1.049 • 0.014 
171.9 1.19 • 
173.7 1.31 4-0.02 
175.5 1.34 • 
177.3 1.12 • 
179.1 0.46 • 

The data  may  then be corrected to the hadron  (or par ton)  
level by: 

C" = ~, Qij D j ,  ( 7 )  

J 

where Dj  is the n u m b e r  of  observed events in b in  j in the 
data. It  is clear f rom (6) that  the matr ix  Q depends on 
the true dis t r ibut ion C, init ially taken from the Mon t e  
Carlo. I f  the corrected data  C" differ significantly f rom 
the assumed dis t r ibut ion C~, then C" may be subst i tuted 
for Ci in (6) and  the correct ion procedure iterated. It  was 
found  that  the value of as was extremely stable under  

Table 1 (continued) 

Ycut ./~ Ycut D2 

0.0001 8.60 +0.24 
0.0002 6.76 5:0.17 
0.0007 4.36 • 
0.001 3.87 • 
0.002 3.16 • 
0.005 2.63 • 0.03 
0.007 2.51 • 
0.01 2.41 • 0.02 
0.02 2.258 • 0.013 
0.03 2.188 • 0.009 
0.04 2.147 • 0.008 
0.05 2.118 • 0.007 
0.06 2.098 • 0.006 
0.07 2.083 • 0.006 
0.08 2.070 • 0.004 
0.10 2.051 • 
0.12 2.038 • 0.002 
0.14 2.028 • 0.002 
0.17 2.018 • 0.002 
0.20 2.011 • 0.001 

0.001 - 0.002 161.0 • 10.0 
0.002-0.005 73.6 -t-0.6 
0.005-0.010 26.7 • 
0.01 -0.02 11.5 +0.6 
0.02 -0.03 5.9 +0.4 
0.03 - 0.04 3.74 + 0.19 
0.04 - 0.05 2.64 • 0.09 
0.05 -0.06 1.93 +0.10 
0.06 - 0.08 1.37 • 0.08 
0.08 - 0.10 0.93 • 0.05 
0.10 - 0.12 0.63 • 0.04 
0.12 -0.14 0.47• 
0.14 -0.17 0.33 • 0.02 
0.17 - 0.20 0.23 • 0.03 

1 i 
OPAL data �9 ~'~'~. 

., i . J .TS T 
10 10 HERWIG i .............. 

H |  , ~ ] , , , , I , , , , I . . . .  I 1 , ) , [ , 

0 0.1 0.2 0.3 0 0.1 0.2 
B-r B w 

1 0  . . . . . . . .  l . . . . . . . .  [ . . . . . . . .  [ 

9 c 
N 7 8 ~ OPAL data ') 

X 
6 \ JETSET _ 

5 X HERWIG .............. 
4 ~ 

3 

1 

2 10.4 10.3 10.z 10.1 
Ycut 

Fig. I. Data corrected to the hadron level for: a Br, b Bw, 
c ~ .  The curves show the predictions of the QCD parton shower 
models JETSET (solid) and HERWIG (dotted) as described in the 
text 

such an iterative procedure, as expected since the Monte  
Carlo was already tuned  to fit the data  well. F ina l ly  a 
b in-by-bin  correct ion was applied to account  for the ef- 
fects of  initial  state radia t ion and  losses of events in the 
selection procedure - this correction turned out  to be 
very small. We found that  the data  corrected using this 
matr ix  method  yielded values of  ~s which were entirely 
compat ible  with those from the b in -by-b in  method.  
Therefore we show the matr ix  corrected results for 
(1 - T), M E, B r and  B w in this paper. 



In Table 1 we present data for the observables used 
in the present analyses, corrected for detector effects (i. e. 
at the hadron level). The errors include a statistical part, 
arising from finite statistics in both data and Monte Carlo, 
and a (dominant) contribution from experimental sys- 
tematic effects, estimated as described in Sect. 4.3. The 
errors are in general correlated between bins; these effects 
were estimated by dividing the data and Monte Carlo 
samples into a number of independent subsets and com- 
puting the covariance matrix. The errors quoted in Table 1 
are based on the diagonal terms of the covariance matrix, 
but the full matrix was available when fitting the 
data. In Fig. 1 we show the hadron level data for the 
observables which we have not presented in previous 
publications [5, 8], namely B r, B w and ~,, compared 
with the predictions of the parton shower models 
JETSET version 7.3 [43] and H E R W I G  version 5.5 [44], 
with parameters tuned to OPAL data as described in 
[42, 45]. 

4 D e t e r m i n a t i o n  o f  ~t s 

4.1 Combination of  resummed 
and f ixed order QCD calculations 

For the present analysis, the NLLA and ~f(a~) calcu- 
lations have to be combined before they are fitted to data. 
There are a number of different schemes by which this 
may be done, which we describe here, following the dis- 
cussion in [28, 46, 21]. We consider four schemes, which 
we refer to as 'In (R)-matching', 'R-matching', 'modified 
R-matching' and 'modified In (R)-matching', though not 
all schemes are applicable to all seven observables. The 
various matching schemes all embody the full ~f(a 2) re- 
suit, together with the resummation of  leading and next- 
to-leading logarithms, but they differ in higher orders. 
The technical details of these schemes are given in the 
remainder of  this section. 

For  all the variables we are considering for which 
resummation is possible, with the exception of the aver- 
age jet multiplicity ~,, the cumulative cross-section may 
be written in the general form: 

R ( y ) _  i 1 dtr 
o ~ - d y y  dy 

= C(as) exp G (as, L)  + D (as, Y), (8) 

where y is (1 - T), MZ/s ,  Br  or B w in the case of the 

event shapes, cos2 ( 2 )  in the case of  XEEO and Y~ut for 

the jet rates, and L =  In ( I / y ) .  D(as,  y)  is a remainder 
function which should vanish as y ~ 0 .  The general struc- 
ture of  the cross-section in powers of as and of large 
logarithms is indicated in Table 2. The functions C and 
G may be written: 

C(as) = 1 + ~, C~ff n (9) 
n = l  

and 

oo n + l  

G ( ~ s , L ) =  ~, ~, Gnm~nLm=-Lgl(as L)  
n = l  m = l  

+g2(o~sL)+asg3(otsL)+~2g4(as L)  . . . .  (10) 

where for brevity we write fis for (as/2rt) .  The functions 
Lg~ (a s L)  and g2(asL) represent the sums of the leading 
and next-to-leading logarithms respectively, to all orders 
in as (see Table 2). The N L L A  calculations give an ap- 
proximate expression for R (y) in the form: 

RNLLA (y) = (1 + C, i s +  C2 A2) 

• exp [Lg, (es L)  +g2 (as L)] �9 (11) 

The functions gl and g2 are given by the N L L A  calcu- 
lations; the coefficient C~ is known exactly from the df (as) 
matrix elements and C2 is known (in the case of  (1 - T), 
M~,  B r  and Bw) from numerical integration of the 
~f (a~) matrix elements; their values are summarized in 
Table 3. The full ~Y(a 2) calculation yields an approxi- 
mate expression for R ( y )  of  the form: 

Re(~:)(y ) = 1 + d ( y ) A  s + ~.~ (y)ff~, (12) 

where the coefficients ~r  and ~ (y)  are equivalent 
to the A and B coefficients tabulated in [4], but integrated 
to correspond to the cumulative distribution R (y).  In the 
case of XEE c, B r  and B w we have run the program 
EVENT, which was used by the authors of  [4], to derive 
values of  the coefficients. 

Table 2. Decomposition of the cumulative cross-section, In R(y), in powers of As = (~s/2 n) and L= In (l/y). The NLLA calculations 
provide the terms in the first two columns, while the ~Y(~) calculations yield the sums of the terms in the first two rows. The matching 
procedures involve combining these without double-counting the terms in common 

In R (y) = 

Leading Next-to -leading Subleading Non-logarithmic 
logs logs logs terms 

G12AsL 2 + GI1A~L + ~  ~(1) 
+ G23A~L 3 + G=A~L 2 + G2, A~L +ot~ G(1) 
+ O34ff~3 L 4 + G33a~L 3 + O32ff~L2+ -. .  + . . .  
+ G45 ff~4 L 5 + G44ff4L 4 + G43A4~L 3 + . . .  + . . .  
+ . . .  + . . .  + . . .  + . . .  

Lgl(OtsL) +g2(~s L) + . . .  + . . .  

= S(y)oT~ 
= (~(y ) - �89  
0'(r 



Table 3. QCD coefficients used in the matching of the NLLA and 
~(a2) QCD calculations. For QCD CF =4, C a = 3 and n s is taken 
to be 5. The C~ coefficients take into account the difference between 
the Born and the W (as) hadronic cross-section. Coefficients derived 
from fits to the full ~(a~) coefficient ~ (y) are shown with errors. 
In the cases where coefficients are unknown they were taken to be 
zero 

Variable C~ C~ 

/" 5 nz\  
( l - T )  ~ , ~ - + ~ - )  CF=1.053 + 34 +22 

M . / ~  ( _  5 + ~ )  c~= 1.053 + 40 +20 
2 3-/ 

Br ( - ~ + n ~ )  Ce= 1.826 -126+16 

B w ( - -~+n~)CF=l .826  --182+ 8 

/ 5 n z \ 
R~ ~ - ~ - + ~ - - 6 1 n 2 )  CF=--6.69 - 

Variable G~2 Gu G23 (]22 G= 

( l - T )  --2CF =-8  3CF= +4 -~CFCA+2CFnf=-lO.22 

M./~/s _2CF=_8 3CF= +4 --~ CFCA+~CFns=--10.22 

B T - 4 C r =  - ~  6CF= +8 --~ CFCA+ ~ Crni = --27.26 

B w --4CF= --~ 6Cr= +8 - ~  CeCA+ ~ Crns= -27.26 

ZE~ c -CF= --4 3CF= +4 --191 CFCA+~CFns= --3.41 

R2 _CF = _4 3CF= +4 - ~  CFCa-}-~CFnf= --3.4l 

_4nzC~+(= 2 169"~ ,, _ \ ~ - ~ /  CFCa+~CFns--24.94 + 30+ 8 

2 2 2 ( nz 169x~ 11 __ -~Tr C ~ + \ ~ - ~ /  CFCA+~CFnf----13.24 + 36:Jzll 

_!~zt2C~+(232 35)CrCA+~Cenf=--81.33 +201• 

-~n C~+ - - CFcA+ZCFnf=--34.55 +219• 8 

(n 2_35~ 
6 36,/ CFCw+~CFny=3"06 -- 58• 7 

CeCA- �89 C~nj.= 7.67 

The simplest matching scheme involves taking the log- 
arithm of  (12) and expanding as a power series, yielding: 

In R (y) 

=~r189 ~ ( a 3 ) ,  (13) 

and similarly rewriting (11) as: 

In RNLL A (y) = Lg 1 (as L) + g2 (as L)  + C~ A~ 

+ [C2-�89 C 2" - 2  , la~ + G ( a J )  (14) 

Removing the terms to O ( a  2) in the NLLA expression 
(14), replacing them by the G(a~)  terms from (13) and 
neglecting non-logarithmic terms of higher order yields 
(c.f. Table 2): 

In R (y)  = Lg, (a~L) + g2 (as L ) 

- (G,1 L + G,~ C ~) A~ - (G= L ~ + G~ L ~) ~s = 

+ d ( y ) ~ s + [ , _ ~ ( y ) - � 8 9  (15) 

This procedure will be referred to as 'ln (R )-matching'. 
Alternatively the analogous procedure may be carried out 
for the functions R (y) instead of  In (R (y)),  yielding: 

R (y)  = ( 1 + C~ A~ + C z A 2) exp { Lg I (a S L) 

+gz(asL)} - (Cl + GI~ L+ G12 L 2 ) ~ s  

- -  [ C2 ~- G22 L 2 + G23 L 3 + (Gu L + G12 L 2) 

+ d ( y ) ~  S + ~ (y)ff2.  (16) 

This procedure will be referred to as 'R-matching'. It 
would be expected that R-matching would be less reliable 
than the ln(R)-scheme, because the subleading term 
Gza ffZL, which does not vanish as y ~ 0 ,  is not exponen- 
tiated in (16), whereas it is exponentiated in (15) because 
it is implicitly included in the ~ (y) coefficient. This 
leads one to consider a modified form of  (16) in which 
the G21 As 2 L term is included in the argument of  the ex- 
ponential, and subtracted after exponentiation. We refer 
to this as the 'modified R-matching' scheme (called 'in- 
termediate' matching in [28], and R-matching in [21]). 
The coefficient G2~ is not known analytically, but may 
be inferred approximately from numerical integration of 
the cY (a~) matrix elements. The relevant Gnm coefficients, 
insofar as they are known, are given in Table 3, based on 



[21] for ( 1 -  T) and M/~, [23] for B r and B w, [24] for 
XEEC*, and on the expressions in the appendix to [28] 
for R2** 

A further problem is that the N L L A  calculations are 
not guaranteed to satisfy the necessary constraints, 
R ( y ) ~ l  and dR/dy---,0, at the kinematic limit, Ym~x, 
corresponding to the region of  hard gluon emission. In 
consequence the combined N L L A +  ~Y(e~) calculation 
may fit data less well than the G(c~)  expression in the 
hard region. It has been proposed [46, 21] that this dif- 
ficulty could be overcome in the In (R)-matching scheme 
by replacing L in the NLLA part of (15) by L ' =  
ln (y  -~ -Ym2x + 1). We refer to this possibility as 'modi- 
f ied In ( R )-matching' ***. 

All four matching schemes described above may be 
applied to the observables (1 - T), M~/, B r and B w. The 
value of G21 is not known for R2, and cannot be estimated 
until a complete calculation of  G22 is available, so the 
modified R-matching scheme is not applicable to R 2. The 
2;E~ c exhibits a particular problem because the ~ ( ~ 2 )  
differential distribution diverges at both small and large 
y, so that the cumulative coefficients d and 5~ cannot 
be reliably determined. This precludes the use of  the 
In (R)- and modified In (R)-schemes for XEE c. However, 
the other matching schemes are applicable to the dif- 
ferential ~EEC distribution because they depend only on 
differences between values of S and ~ across a bin. It 
should also be noted that the coefficient C2 is not known 
for XEE c nor for R2. 

The situation is slightly different in the case of the 
average jet multiplicity ~,, since it cannot be written in 
the exponentiated form of (8). This calculation to 
cY(e 2) gives a prediction of the form: 

J/@(~:) = 2 + A ( y ) ~ + B ( y )  -2 (17) 

and the NLLA calculation yields: 

o0 

J] / 'NLLA=2+ Z X . ( L ) f f ~ ;  
n=l 

Z~ (L)  = H12 L2 + HI~ L;  (18) 

Z 2 (L) = / / 2 4  Z 4 -[-//23 L 3 + / /22  L 2 . 

* The calculations of [24] rather than those of [25] are used for 
27n~ c because the former are in a suitable form for matching to the 
~Y (a~) calculations 
** It should be noted that the coefficient G22 for the R 2 variable 

is not expected to be correct, since not all next-to-leading terms 
have been resummed in this case; the value given in Table 3 is simply 
the coefficient of ff~ L 2 in the expansion of the expression given in 
[28], which should be the correct value to use in the matching 
procedure 
*** The value of Ymax was taken to be 0.5 for (1 - T), 0.42 for 
Mn/~s, 0.41 for BT, 0.325 for Bye and 0.333 for R 2. The actual 
kinematic limit depends on the number of partons in the final state, 
and is not precisely known for some of the variables. However, the 
fitted values of a~ were found to be insensitive to the precise value 
chosen for Ymax 

The equivalent to the R-matching scheme is: 

~ =  ~LI~A--  ~ (L) ~ - ~ (L) ~ 

+ A (Y)f fs+ B(Y) f f~ ,  (19) 

while a procedure analogous to In (R)-matching is [47]: 

y//'= JUNLLA exp { -- ~ (L) ff~ -- (~2  (L) 

-- 2 a- ~ (L)  2) 0~ + A ( y )  ffs + (B (y )  

_ 1 A (y)2)  gs2}. (20) 

The coefficients H12, //11 , //24 and//23 are contained in 
(8) of  [27], and by expansion of  the NLLA expressions 

40 
in [27] one can obtain H22 = 6-~6 ]- n y ( 7 n f - 2 7 )  [47]. 

A final consideration is the choice of renormalization 
scale. To cY(0~) the strong coupling constant may be 
written (following the convention of [48]): 

1 [ fll In (ln ( p 2 / A - ~ ) )  ] 
a ~ ( p ) = f l o l n ( l t 2 / A 2 ) ~  [1 -a~--~floln(p/A~_x) _] (21) 

where flo = (33 - 2 nf) /12 n, fll = (153 - 19 nf) /24 n 2 and 
nf is the number of quark flavours, taken to be 5. The 
QCD scale A ~ refers to the M S  renormalization scheme. 
One can relate the renormalization scale p to the e+e - 
centre of mass energy by 

fl =X/~-Ecm , (22) 

where x u is the renormalization scale factor. Naively x u 
would be expected to be of order unity. However, using 
~Y (a{) QCD the experimental data for most observables 
tend to be better fitted with a value x u ~ 1 (see e.g. [5]). 
This is generally understood to be a consequence of miss- 
ing higher order terms in the G(a~)  approach, and it is 
therefore anticipated that the inclusion of higher order 
terms in the N L L A  calculations should reduce the de- 
pendence on x u . In order to account for the dependence 
on xp, the above formulae have to be modified by the 
replacements [4, 21]: 

(y)  -* ~ (y)  + gg'(y) 2 nfloln Xu 2 

g2(asL)_.,.g2(asL) + floa~ L2 dg, (asL) lnx2  
d(~L) 

(23) 

G22 ~G22 + 2nfloG121nx2u. 

An equivalent procedure for M/'[47] involves substituting 
throughout:  

ff~0?~ + ff~ 2 nfl  o In xu 2 . (24) 

4.2 Measurement o f  o~ (Mzo) 

After correcting the data to the parton level as outlined 
in Sect. 3.2, the N L L A  + ~Y(~) QCD calculations were 
fitted to the data using a least X z method. For  comparison 
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Table 4. Ranges used for QCD fits to the data 

Variable NLLA+ ~(~2) fits 0 ( ~ )  fits 

( l - T )  0.06 - 0.30 0.08- 0.30 
M n / V ~  0.18 - 0.40 0.20- 0.52 

B r 0.09 - 0.23 0.14- 0.28 
B w 0.07 - 0.17 0.08- 0.21 
~Ec:X 43.2~ - 162.0~ 43.2~ - 162.00 
R2:ycu t 0.005- 0.20 0.01- 0.20 
J/:Ycut 0.005-- 0.05 0.02-- 0.10 

Only statistical errors o n  the data  were included in the 
calculation o f  ,~2 (including the effect o f  limited Monte  
Carlo statistics). Systematic uncertainties on the data  
(Sect. 4.3.1) were not  taken into account  in calculating 
Z 2 since their definition is essentially arbitrary,  and their 
correlations could not  be estimated reliably. N o r  were 
errors on the Q C D  coefficients taken into account.  Fits 
were performed with the renormalizat ion scale factor  x u 
fixed to 1, and also with xu treated as an additional free 
parameter .  When using a value x u ~: 1 the fitted value o f  
A~,X is converted into an equivalent value o f  ~ at scale 
M z o  using (21); th roughout  the rest o f  this paper  ~ should 

we also fitted the ff(~ff)  Q C D  predictions. A number  o f  
considerations were taken into account  in determining 
the range over which the data  were to be fitted. We re- 
quired that  the detector and hadronizat ion correction fac- 
tors should be reasonably uniform across the fit range, 
and that  the hadronizat ion correction should not  be 
strongly model dependent. This generally determined how 
far into the two-jet region ( y ~ 0 )  the N L L A  fits could 
reliably be performed,  and also set the upper  limit on 
most  o f  the G ( ~  if) fits. We also required that  the value 
o f x  2 be "reasonable",  in the sense that  the contributions 
to X 2 should be distributed fairly evenly across the fit 
range, and no t  domina ted  by the extreme bins. Generally 
the lower limit for the G(~s  2) fits had to be placed higher 
(further f rom the two jet region) than for the N L L A  fits, 
and in some cases the upper  limit had to be placed lower 
for the N L L A  fits than for the G(~ff)  fits (because the 
N L L A  calculations do not  necessarily fall off  correctly 
toward  the hard  kinematic limit). A further constraint  
for Z'EE c was the presence o f  an unphysical  pole intro- 
duced in the N L L A  calculation [24], at a round  X -- 178~ 
the chosen fit range was well away f rom this point. The 
fit ranges chosen are given in Table 4. We confirmed that  
the results for  COs were not  significantly altered if the fit 
range was moved  by one or  two bins ( though in some 
cases the value of  g 2 was significantly worse), and there- 
fore no addit ional error  was assigned resulting f rom pos- 
sible uncertainties in the choice o f  fit range. 

[- 
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4 "  

0.I  0.2 
B w  

1 dry 
Fig. 2. Normalized cross sections -- corrected to the parton 

t r Y '  
level, where the observable X is: a ( 1 -  T), b MH/[/s,  e B r, 
d B w. The curves show the QCD fits using NLLA+ G(ct~) cal- 
culations combined with In (R)-matching, at scale xu = 1. The dot- 
ted lines indicate the fit ranges used 

Table 5. Results of fitting the NLLA + G(~ 2) QCD calculations to the data, using the In (R)-matching scheme in all cases except 2~EE c, 
where the modified R scheme is used 

(1 - T) M~ B r Bw ~'EEC R2 "/]/" 

x~=l  

A~s (MeV) 267• 246• 259• 139• 459• 289• 

~ ( M z o  ) 0.1211 0.1195 0.1197 0.1099 0.1322 0.1225 

x2/d.o.f. 2.3 9.4 5.1 18.8 6.5 6.8 

x~ f i t t e d  

A ~  (MeV) 990 +790 162• 92• 80• 568• 900 +600 
- 370 - 320 

cts(Mzo ) 0.1521 0.1124 0.1040 0.1021 0.1372 0.1493 

xu 10.0 + 1 5 . 2  0.34• 0.13• 0.17• 1.89• 23 6 +48"1 
- 5 . 4  " - 14.2 

x2/d.o.f. 1.9 4.5 2.6 2.0 3.5 5.1 

285• 

0.1226 

2.4 

316+6 

0.1246 

1.37 + 0.25 

0.7 
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Fig. 3. Data corrected to the parton level for: a 2;~ c, b R e, e ~ .  
The curves show the QCD fits using NLLA+ ~(e~) calculations 
combined with In (R)-matching, or modified R-matching in the case 
of Z~E c, at scale x, = 1. The dotted lines indicate the fit ranges used 
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Fig. 4. Dependence ofcq (Mzo) (solid curves) and 22/d.o.f. (dashed 
curves) on xz for NLLA+ G(e~) fits to the OPAL data. In all 
cases ln(R)-matching was used, with the exception of ZEEC, for 
which modified R-matching was chosen 

be taken to refer to oq ( M z o ) .  We used the In (R )-matching 
scheme to combine the N L L A  and O ( e  2) calculations, 
except for XEE c where the modified R-matching scheme 
was used instead. The use of other matching schemes will 
be discussed in detail below. The fit results are listed in 
Table 5. The data corrected to the par ton level are shown 
in Figs. 2 and 3, with the N L L A +  ~ ( e ~ )  fits superim- 
posed. The dependence of~ s and x2/d.o.f,  on x u is shown 
in Fig. 4. The fits with x u = 1 yield acceptable values of 
x2/d.o.f.  (less than 10 for all observables except B w ) ,  

though they are all greater than unity, as might be ex- 
pected since the theory is known to lack some higher 
order terms, and also since experimental systematic errors 
have not been included at this stage. In the case of M/~, 
B w and B r the theory is seen to diverge from the data at 
high values; this arises because the N L L A  calculations 
are not constrained to fall to zero at the upper kinematic 
limit; the introduction of the modified In (R)-matching 
scheme substantially reduces this problem. Five of the 
observables give very similar values of as, while B w gives 
a rather lower value, and ZEE C a higher result. In the fits 
where xu is treated as a free parameter, we find that only 
the jet broadening measures favour values of x u much 
smaller than one, while several observables yield a best 
fit with x u > 1. The dependence of  ~2/d.o.f. on x u is 
particularly weak for ( 1 -  T) and R2, so that the fitted 
parameters are very poorly determined. 

For  comparison, Table 6 shows corresponding fit 
results using G ( e  2) QCD. The dependence of c~ s and 
x2/d.o.f,  on x u is shown in Fig. 5. Generally the 
cY(0~) calculations give a significantly better X 2 when a 
value x u ~ 1 is adopted, the only exception being B r .  This 
strong scale dependence is an indication of  substantial 
missing higher order contributions. Comparing with the 
N L L A  fit results in Table 5 we note that in several cases 
the inclusion of the N L L A  terms in the QCD calculation 
improves the fit to the data for x u = 1. However, the 
~y (e2) fits with optimised scale generally yield values of 
;~2/d.o.f. as good as those obtained from the N L L A  cal- 
culations. The most striking aspect of the N L L A  fits is 
the elimination of the preference for very small x u values. 

In Table 7 we show the effect of using different match- 
ing schemes to combine the N L L A  and G (es 2) calcula- 
tions. As discussed above, and in [23], the R-matching 
scheme is theoretically less favoured, since it fails to ex- 
ponentiate some terms which are exponentiated in the 
ln(R)-  or modified R-schemes. The fits to the data are 
poor in the R-scheme for B w and B r (for which the co- 
efficient G21 is particularly large), and to a lesser extent 
for Mn,  R 2 and ~ The modified R-scheme, in which the 
deficiencies of the naive R-scheme are remedied by ex- 
ponentiating the Gal term, yields results which are very 
close to the In (R)-scheme. The modified In (R)-scheme, 
in which correct behaviour of  the N L L A  calculations is 
enforced near the kinematic limit, gives a significantly 
improved fit to the data for M n ,  B r ,  and particularly 
B w ,  though the value of0~ s is scarcely affected. We there- 
fore use the In (R)-matching scheme to obtain our stan- 
dard results through this analysis, except for 2TEE c, where 
the modified R-scheme is used instead. 
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Table 6. Results of fitting the ~(ct 2) QCD calculations to the data 

(1 - T) M~/ B r B w XE~c R2 M/ 

xu=l  

A~g (MeV) 532_+16 386_+10 630_+19 354___10 348-+3 277__+8 378_+12 

ocs (Mzo) 0.1356 0.1284 0.1397 0.1266 0.1263 0.1217 0.1283 

z2/d.o.f. 7.4 18.4 2.7 10.3 9.7 4.4 10.4 

x u fitted 

A ~  (MeV) 146• 2194-5 445 +69 - 5 7  209• 181 -+6 193-+ 11 203+6 

e~(Mzo ) 0.1107 0.1174 0.1315 0.1166 0.1141 0.1152 0.1164 

x u 0.055• 0.071+0.004 0.59_0.11 +0.14 0,070-+0.006 0.18-+0.01 0.092• 0.067-+0.014 

xZ/d.o.f. 2.4 3.0 2,5 2.4 7.8 1.8 0.4 

Table 7. Values of c~ s (Mzo) and x2/d.o.f, derived by fitting the NLLA + G(ct 2) QCD calculations to the data, for x u = 1, using different 
matching schemes. As explained in the text, the matching schemes have a slightly different meaning for M/ 

( 1 -  T) MI~ B r B w XEE c R~ M / 

In (R)-matching : o~(Mzo ) 0.1211 0.1195 0.1197 0.1099 - 0.1225 0.1226 
.. x2/d.o.f. 2.3 9.4 5.1 18.8 6.8 2.4 

R-matching : o~(Mzo) 0.1243 0.1243 0.1279 0.1203 0.1283 0.1120 0.1280 
: xZ/d.o.f. 1.6 27.5 226. 250. 4.3 26.9 9.4 

Modified R-matching : ~,(Mz0 ) 0.1209 0.1192 0.1229 0.1116 0.1322 - - 
: xZ/d.o.f. 1.8 12.5 7.7 19.7 6.5 

Modified In (R)-matching : cz,(Mzo) 0.1207 0.1190 0.1189 0.1099 - 0.1226 - 
: x2/d.o.f. 5.5 4.7 2.2 2.6 6.6 
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Fig. 5. Dependence of~. (Mz0) (solid curves) and x2/d.o.E (dashed 
curves) on xu for ~(~) fits to the OPAL data 

4.3 Estimation o f  systematic uncertainties 

The values oft% (Mzo)  for the seven observables together 

with their statistical errors are given in Table 8. Before a 
meaningful  value o f  es can be quoted it is necessary to 
investigate various possible sources o f  systematic uncer- 
tainty. With  the present amoun t  o f  data  these systematic 
effects prove totally to dominate  the small statistical er- 
rors. The systematic effects may  be grouped under  the 
following headings:  

4.3.1 Experimental  uncertainties. The corrections for de- 
tector acceptance and resolution depend upon  the Monte  
Carlo simulation giving a faithful description o f  the real 
data. In  our  s tandard analysis both measured tracks and 
electromagnetic energy clusters were used. The analysis 
was repeated using tracks alone or  the electromagnetic 
calorimetry alone, thus yielding samples o f  corrected data  
with completely independent  detector corrections. 
The analysis was also repeated with several independent 
modificat ions to the event selection criteria: firstly re- 
stricting the thrust  axis to lie within the barrel region of  
the detector ( [cos  01 < 0.7), secondly increasing the min- 
imum track multiplicity cut to 7 to eliminate background  
more  securely, and finally using a cut on missing mo-  
mentum (IPvi~ ]/Evis < 0.4), where Pvi~ is the vector sum 
of  all the detected particle momenta .  Values o f  as were 
computed  f rom each of  these alternative analyses and the 
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Table 8. Systematic errors on the value of c~ s (Mzo) derived from each of the seven observables. In all cases the NLLA + G ( ~ )  QCD 
calculations were fitted to the data assuming x u = 1. The In (R)-matching scheme was used except for ~rEEC, where the modified R-scheme 
was taken. In the cases where a signed value is quoted, this indicates the direction in which c L (Mzo) changed with respect to the default 
analysis when a certain feature of the analysis was changed 

(1 - T) Mn Br Bw ~EEC Rz M/" 

~s(Mzo) 0.1211 0.1195 0.1197 0.1099 0.1322 0.1225 0.1226 

Statistical + 0.0005 + 0.0005 + 0.0005 i 0.0004 + 0.0002 + 0.0005 + 0.0003 
Experimental syst. + 0.0024 • 0.0017 • 0.0032 ~ 0.0026 + 0.0031 + 0.0042 • 0.0034 

JETSET/a + 1 s.d. - 0.0006 - 0.0022 - 0.0013 - 0.0004 - 0.0014 + 0.0002 + 0.0002 
JETSET/a -  1 s.d. +0.0006 +0.0009 +0.0009 0.0000 +0.0005 -0.0001 -0.0002 
JETSET/crq + 1 s.d. - 0.0006 - 0.0005 - 0.0006 - 0.0007 - 0.0008 + 0.0001 + 0.0001 
JETSET/crq - 1 s.d. + 0.0020 + 0.0010 + 0.0018 + 0.0003 + 0.0009 + 0.0002 + 0.0001 
JETSET/Peterson + 0.0010 + 0.0010 - 0.0006 - 0.0003 + 0.0005 + 0.0014 + 0.0014 
JETSET/udsc only + 0.0022 + 0.0003 + 0.0042 + 0.0020 + 0.0017 + 0.0026 + 0.0025 
JETSET/Q0 = 2 GeV - 0.0012 + 0.0001 - 0.0008 + 0.0001 - 0.0009 + 0.0016 + 0.0019 
HERWIG 5.5 - 0.0040 + 0.0031 - 0.0090 - 0.0014 - 0.0041 + 0.0018 + 0.0052 
ARIADNE 3.1 + 0.0005 + 0.0018 - 0.0022 + 0.0004 - 0.0012 - 0.0042 - 0.0024 
CO JETS 6.23 - 0.0357 - 0.0235 - 0.0399 - 0.0275 - 0.0404 - 0.0247 - 0.0202 

Total hadronization + 0.0053 • 0.0044 • 0.0105 • 0.0026 • 0.0050 + 0.0057 • 0.0067 

x u = 0.5 - 0.0058 - 0.0050 - 0.0066 - 0.0039 - 0.0045 + 0.0019 - 0.0035 
x, = 2 + 0.0072 + 0.0066 + 0.0080 + 0.0049 + 0.0054 + 0.0023 + 0.0048 

+ 0.0093 + 0.0082 + 0.0136 + 0.0061 + 0.0080 + 0.0075 + 0.0089 
Total error - 0.0082 - 0.0069 - 0.0128 - 0.0054 - 0.0074 - 0.0073 - 0.0083 

largest  difference between any pa i r  was assigned as a 
sys temat ic  error.  In  all cases this p roved  to  result  f rom 
the difference between t racks  a lone and  e lec t romagnet ic  
ca lo r ime t ry  alone.  The  sys temat ic  e r ror  der ived for  each 
observable  is given in Table  8. 

4.3.2 Hadronization uncertainties. Since the N L L A  Q C D  
calcula t ions  are based  on the leading loga r i thm approx -  
ima t ion  it is mos t  a p p r o p r i a t e  to correct  for  had ron i -  
za t ion  effects using p a r t o n  shower Q C D  M o n t e  Car lo  
models  which are  based  on essential ly the same approx -  
imat ion .  However ,  this cor rec t ion  is far  f rom unambig -  
uous,  since the p a r t o n  shower  M o n t e  Car lo  mode l s  in- 
co rpo ra t e  mass  effects and  cutoffs  in ways which are  dif- 
ferent  f rom the analy t ic  N L L A  calculat ions.  F u r t h e r m o r e  
different  models  are  avai lable  for  the had ron i za t i on  p ro -  
cess, which involve many  free parameters  de termined f rom 
fits to  data .  

W e  have cons idered  several  different  models  for  the 
had ron i za t i on  correc t ion ,  re ta ining the s t anda rd  de tec tor  
cor rec t ions  based  on  the full s imula t ion  o f  the O P A L  
de tec tor  using J E T S E T  7.3. The  resul t ing changes in es 
for each observable  are  given in Table  8. The  fo l lowing 
have been inves t igated:  

�9 Some o f  the pa rame te r s  o f  the J E T S E T  7.3 mode l  [43] 
were de te rmined  f rom a fit to O P A L  d a t a  on  g loba l  event  
shapes [42]. This  fit p rocedure  y ie lded values  o f  the  pa -  
rameters  with some range o f  uncer ta in ty ,  so we have 
independen t ly  var ied  the two pa rame te r s  which are  
specifically re la ted  to hadron iza t ion ,  a q = P A R J ( 2 1 )  

= 0 . 3 7  + 0"03 Ge V and  a = P A R J ( 4 1 ) = 0  18 +0"12,  by  
- 0 . 0 5  " - 0 . 0 5  

+ 1 s t anda rd  dev ia t ion  a b o u t  their  op t imized  values.  
The  effect of  these changes was general ly  found  to be 
modest .  

�9 The  O P A L  s t anda rd  vers ion o f  J E T S E T  uses the L u n d  
symmetr ic  f r agmen ta t ion  model .  A n  a l ternat ive  which is 
f avoured  for  m a n y  heavy  f lavour  studies is the fo rm pro-  
posed  by  Peterson  et al. [49], which is avai lable  as an 
op t ion  in JETSET.  W e  have therefore  t r ied using an  al- 
ternat ive  set o f  f r agmen ta t i on  pa rame te r s  [45], aga in  de- 
r ived by  f i t t ing O P A L  data ,  in which the Pe te rson  fo rm 
is used for  heavy  f lavour  f ragmenta t ion .  The  effect on 
the f i t ted es value  is small .  
�9 The  analy t ic  Q C D  calcula t ions  assume the pa r t ons  are 
massless,  and  therefore  pred ic t  the same d is t r ibu t ions  for  
any  q u a r k  f lavour .  The  p a r t o n  shower  M o n t e  Car lo  p ro -  
grams assign masses  to  the  quarks ,  and  indeed the p a r t o n  
level d i s t r ibu t ions  exhibi t  some differences be tween heavy  
and  l ight  quarks  for  the  observables  cons idered  here.  W e  
have therefore,  in J E T S E T  7.3, inves t iga ted  the effect o f  
pe r fo rming  the h a d r o n i z a t i o n  cor rec t ion  by  excluding 
b b e v e n t s  a t  the p a r t o n  level, whi ls t  inc luding all f lavours  
at  the h a d r o n  level. In  this way  the correc ted  p a r t o n  level 
d i s t r ibu t ion  co r r e sponds  to u, d, s, c quarks  only.  The  re- 
sult ing value o f  es was found  to be sys temat ica l ly  larger  
(by  a b o u t  0.002 on  average)  for  all observables .  
�9 The p a r t o n  shower  M o n t e  Car lo  p r o g r a m s  i nco rpo ra t e  
a m i n i m u m  value,  Qo, for  the p a r t o n  v i r tua l i ty ;  for  ex- 
ample  Q0 = 1 GeV in J E T S E T  7.3 wi th  the O P A L  p a r a m -  
eter  set. In  con t r a s t  the N L L A  calcula t ions  impose  no  
such cutoff.  W e  have therefore  t r ied  vary ing  the value  o f  
Qo in J E T S E T  between 4 GeV and  the m i n i m u m  value  
pe rmi t t ed  ( Q 0 = 2 . 2 •  W e  f ind tha t ,  
wi th in  this  range,  the value  o f  es der ived  f rom the d a t a  
varies a pp rox ima te ly  l inear ly  wi th  the value  o f  Qo used 
in the ha d ron i z a t i on  correct ion.  W e  therefore  t ake  the  
difference be tween the values  o f  es co r r e spond ing  to  
Q0 = 1 GeV and  Qo = 2 G e V  as a ( symmetr ic )  sys temat ic  
e r ror  resul t ing f rom this source;  insofar  as the  l inear  ap-  
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proximation is valid this would encompass the value 
Q0 = 0. As seen from Table 8, the value of as is not strongly 
dependent on Qo. 
�9 The H E R W I G  program [44] uses a cluster fragmen- 
tation model which is quite different from the string model 
[50] employed in JETSET. We have used version 5.5 of  
HERWIG,  with parameters based on a tuning to OPAL 
event shape data [45]. In several cases, this constitutes 
the largest hadronization uncertainty in a s, though the 
effect is not in the same direction for all observables. 
�9 The ARIADNE model [51] uses a colour dipole for- 
mulation of  the parton shower, with the standard Lund 
string model for hadronization. We used ARIADNE ver- 
sion 3.1 with parameters tuned to OPAL data [42]; in 
most cases the influence on a~ is small. 
�9 The COJETS model [52] uses an incoherent parton 
shower with independent fragmentation. We used version 
6.23 with default parameters. However, the patton shower 
in this model does not evolve so far as in the other models 
considered (the average number of  partons is 3.3, com- 
pared to 9.1 in JETSET).  It therefore appears that CO- 
JETS, with its present parameters, is not appropriate at 
the parton level for comparison with the NLLA  calcu- 
lations, which implicitly incorporate multi-parton final 
states. For  this reason, and for other reasons outlined in 
[5], we exclude COJETS from the final assignment of 
systematic errors, though we show the effect of using it 
in Table 8. 

It is arguable that the hadronization effects listed above 
are not altogether independent (for example, JETSET 
and H E R W I G  use different effective cutoffs in the parton 
shower). However, none of the models is likely to be 
perfect, so in order not to underestimate this uncertainty 
we define a totoal hadronization error for each observ- 
able by adding in quadrature the following: the larger of  
the changes in as when a i s  changed by +1  and - 1  
standard deviation, the larger of  the changes in ~s when 
Crq is changed by + 1 and - 1  standard deviation, the 
change in as when only u, d, s, c quarks are considered 
in JETSET, the change in ~s when Peterson fragmenta- 
tion is used in JETSET, the change in a s when Qo = 2 GeV 
is used in JETSET, the change in as when H E R W I G  is 
used and the change in a s when ARIADNE is used. This 
total error is given in Table 8. It appears that the single 
hemisphere variables, B w and M/~, are the least sensitive 
to hadronization, while B T is the most sensitive of the 
observables considered here. 

4.3.3  R e n o r m a l i z a t i o n  scale  uncer ta in t ies .  The choice of  
the value of x u is a significant source of systematic un- 
certainty, but the precise way to quantify this error is 
essentially arbitrary. This uncertainty is generally under- 
stood to be connected with higher order contributions 
missing from the QCD calculations. In our previous 
G(~s 2) analysis [5] we discussed various procedures to 
define xu ,  but finally chose to average the values of  
as ( M z o )  obtained with x u = 1 and with x u fitted to data, 
and to quote half their difference as a systematic error. 
However, this procedure does not seem appropriate for 
the present N L L A +  G(a~)  analysis. In some cases the 

optimal fitted value of  x u is close to 1, in which case the 
previous method would underestimate the scale uncer- 
tainty. Furthermore, in some cases X 2 does not show a 
well defined minimum, falling slowly but monotonically 
with increasing x u. We therefore choose to define the 
scale uncertainty to be the variation in a ~ ( M z o  ) as the 
renormalization scale factor is varied in the range 
0.5 < x u < 2. The case x u = 1 is taken to be the central 
value, so the scale error is asymmetric in general. 

4.3 .4  M a t c h i n g  s c h e m e  uncer ta int ies .  Different matching 
schemes were discussed in Sect. 4.1; they are equivalent 
so far as the leading and next-to-leading terms are con- 
cerned, but differ in the higher order terms generated by 
exponentiation. Therefore the differences between the re- 
sults in Table 7 represent a further measure of possible 
higher order effects. In those cases where more than two 
matching schemes were available, we observe that all the 
matching procedures except for the R-scheme yield very 
similar values of a s. Since the R-scheme is disfavoured 
both theoretically, and in many cases by the x2/d.o.f. 
values of  the fits, we choose to discount it. The remaining 
uncertainty in as resulting from different matching pro- 
cedures is much smaller than the error already assigned 
on the basis of  x u dependence. Since the two effects may 
be expected to be correlated because both relate to miss- 
ing higher orders, we assign no additional error resulting 
from the choice of matching scheme. 

4.3.5  E x p l i c i t  inclus ion o f  sub l ead ing  logar i thms .  As a fi- 
nal check of possible higher order effects, we have in- 
vestigated the possibility of  including a subleading log- 
arithmic term in the fit. In the case of  (1 - T), M~/, B r, 
B w and .SEEC, and for all matching schemes except R- 
matching, the leading and next-to-leading logarithms and 
the subleading term G21 ffs 2 L are all resummed, and hence 
the first subleading logarithmic term to be absent from 
the resummation is G32•s3L 2. We have therefore per- 
formed fits to the data including a term of  this form in 
the exponentiation, treating G32 as a free parameter to 
be determined in the fit. The results are summarized in 
Table 9. The values of x2/d.o.f, are substantially im- 
proved by the inclusion of  the subleading term, suggesting 
that higher order effects might in large part account for 
the values of x2/d.o.f, in the standard analysis being 
greater than unity. The fitted values of G32 are different 
for different matching schemes, indicating that this term 
is effectively parametrizing a mixture of higher order 
terms. Naively one might guess that the values of G32 
could be greater than G2~ by a factor of  order 2 n (since 
a factor (2 z~)-1 appears in c?s), and the fitted values are 
therefore not of unreasonable size. By reference to 
Table 5, we note that varying G32 in the fits yields better 
jyZ/d.o.f, values than varying x u. Also the values of ~s 
for the different variables tend to move slightly closer 
together when G32 is fitted, in contrast to their behaviour 
when x u is fitted. The most important feature is that the 
changes in the fitted values of as when G32 is fitted are 
small, and contained within the errors already assigned 
from the study of  x u dependence. We therefore assign no 
additional systematic error as a result of  this study. 
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Table 9. Values of ~q(Mzo) and x2/d.o.f, derived by fitting the NLLA+ ~'(ct~) QCD calculations to the data, for xz = 1, allowing the 
subleading coefficient G32 to be determined in the fit 

(1 - T) M~, B r B W Z~EE C 

: cts(Mzo ) 0.1195 0.1208 0.1212 0.1133 - 
: g2/d.o.f. 1.5 3.4 1.5 1.5 
: G32 -370+85 575+70 1330• 2380+170 

: cts(Mzo ) 0.1200 0.1206 0.1249 0.1149 0.1300 
: g2/d.o.f. 1.6 4.3 1.4 1.5 4.4 
: G32 -190• 670+70 1650+170 2420+170 -210+20 

: cts(Mzo ) 0.1175 0.1198 0.1179 0.1111 - 
: g2/d.o.f. 1.5 2.6 1.2 1.0 
: G3 2 - -  725 + 85 315 • 65 - 640 + 190 590 + 150 

In (R)-matching 

Modified R-matching 

Modified In (R) matching 

4.3.6 Final  errors on Cts ( M z o ) .  Finally, the statistical er- 
ror, the experimental systematic uncertainty, the hadron- 
ization error, and the scale uncertainty are all combined 
in quadrature to yield the errors given in the final row 
of Table 8. The values are also shown in Fig. 6. I f  only 
experimental errors are taken into account, the results 
(in particular those from B w and ~'EEC) are not com- 
patible with a common value, especially if correlations 
between the systematic contributions are taken into con- 
sideration. If  the full systematic errors are considered 
then there appears to be no inconsistency, but again the 
observables are not fully independent, as discussed below. 

(I-T) 

Resummed NLLA+O(a~) 

OPAL 

MH 

BT 

B w 

E E E C  

R 2 

N 

i i i i 

[ I 

. . . .  ~ , ,  i i I i i , ,  ~ . . . .  
0.09 0.1 0.11 0.12 0.13 0.14 

Cts(M z) 

Fig. 6. Values of cq (Mzo) derived from NLLA + G (ct 2) fits to the 
OPAL data. The solid error bars denote the experimental uncer- 
tainties, while the dashed error bars show the total errors, including 
hadronization and higher order effects. The vertical line and the 
shaded region represent the weighted mean value and its error 

4.4 Combined  result  

A particular emphasis of  this analysis was to study all 
the observables for which resummed QCD calculations 
are available. It is therefore instructive to combine the 
measurements of ~s from the seven variables considered 
in this analysis, in order to assess the degree of consis- 
tency with which QCD describes the data, and in order 
to arrive at a "best estimate" of cts ( M z o ) .  We have con- 
sidered three methods: 

4.4.1 We igh t ed  mean.  This method is essentially identical 
to that employed in the previous OPAL paper [5]. A 
weighted mean was formed: 

7 7 

<= Z w, 4'V Z w, 
i = 1  i = 1  

where ~i)  is the value of  ~ derived from the i tn observ- 
able, and the weight w e is equal to the reciprocal of the 
square of the total error on 0c~ i) as given in Table 8. In 
order to estimate the error on the weighted mean statis- 
tical correlations between the different observables were 
ignored, but correlations in the systematic uncertainties 
were taken into account by forming the mean d~ of  the 
values obtained in each of  the different systematic checks 
described in Sect. 4.3. A systematic uncertainty on ~ was 
then derived from the different mean values following the 
same procedure as for the individual ~i) measurements. 

Applying this procedure to all seven observables we 
obtain the value: 

+ 0.006 
ots ( M z o )  = 0.120 + 0.003 (expt.) _ 0.004(theor.) 

where the first error includes statistical and experimental 
systematic effects, while the second includes the had- 
ronization and scale uncertainties. I f  the B w variable, 
which gave a rather low value of  ~s and also the smallest 
overall error, were excluded the mean would increase to 
0.123, if 2~EE c were excluded the mean would be 0.118, 
while if both were removed the mean would be 0.121. 
The N L L A  calculations are arguably less reliable for 2TEE c 
(an unphysical pole is introduced in the calculation, 
though well outside the fit region) and for the jet rates 
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(the next-to-leading resummation is incomplete); if  we 
were to average the other observables, ( 1 -  T ) ,  MI~ ,  B r  

and B w ,  we would obtain 0.116. Thus the overall mean 
of  all seven observables yields a value and an error which 
comfortably encompasses the mean of any reasonable 
subset. 

4 . 4 . 2  M i n i m i z a t i o n  o f  X 2. In order to account for the 
correlation between observables in a more formal way, 
we have estimated the value ~s which is most  consistent 
with all the measurements, by minimizing 

7 7 

z 2=  2] 2] j)) 
i = 1  j = l  

with respect to ~ ,  where ~"  is the covariance matrix 
of  the seven individual measurements. The statistical part  
of  ~/" was estimated by dividing the data and Monte 
Carlo samples into ten subsamples, determining values 
o f ~  I) f rom each, and measuring the covariances between 
them. To this was added a matrix associated with each 
of  the detector and hadronization systematic effects listed 
in Sect. 4.3.* Following this procedure for the case x u = 1 

we find an unacceptable value of x2/d.o.f.  = 34, with a 
value of  ~s=0.113 which lies below most  of  the mea- 
surements on account of  strong positive correlations be- 
tween the systematic errors. The large value of z2/d.o.f .  
is associated with 2TEE c, and to a lesser extent B w ;  re- 
stricting the procedure to the other five observables we 
could obtain z2/d.o.f .  = 0.3 and ds = 0.121, showing that 
these five are very compatible. 

Thus the N L L A  + ~ (0~ 2) theory appears to be unable 
to describe Z'EE c and B w simultaneously with the other 
five variables, if the systematic errors and their correla- 
tions are estimated as described above, and if the value 
of  x u is fixed to the same value for all observables. 
However, if the scale error given in Table 8 is included 
in the diagonal terms of ~ then a satisfactory value 
of  z Z / d . o . f .  = 1.7 may be obtained using all seven ob- 
servables, with d~ = 0.119 • 0.004, in agreement with the 
weighted mean in Sect. 4.4.1. This procedure effectively 
allows the a s value corresponding to each observable to 
vary independently by an amount  corresponding to the 
range 0.5 < x u < 2. However, it does not address the ex- 
tent to which the x Z / d . o . f ,  of the fit to the data depends 
on xu;  this is considered in the next section. 

4 . 4 . 3  C o m b i n e d  f i t .  In a previous OPAL paper  [5] we 
introduced a method for investigating the consistency of  
QCD by performing a simultaneous fit to the distribu- 
tions of  many  observables using a common value of  
A ~ .  In the case of  G(0~ 2) QCD we found that such a 
simultaneous fit could be successful, but only if the re- 
normalization scale factor, x u, was allowed to vary in- 
dependently for each observable, most  of  the fitted values 
of  x u being much smaller than unity. 

* If the change in ~i) resulting from a particular systematic check 
was 8~0 then 8 ~ i ) ~ i )  was added to the element ~ of the co- 
variance matrix. This corresponds to assuming correlation coeffi- 
cients of + 1 in the error matrix associated with each individual 
effect 

Accordingly we have attempted a similar fit of  
N L L A +  ~ ( a ~ )  QCD to the present data. The same fit 
ranges were used as for the standard fits, but in order 
that each observable carry equal weight in the fit, bins 
in the data were combined so as to form an equal number 
of  bins, seven for each observable. Correlations between 
the errors on different observables were neglected. As 
usual, the ln(R)-matching scheme was used except for 
Z ~ c ,  where the modified R-scheme was taken. The result 
of  a combined fit to all seven observables with x u = 1 was 
as=0.122,  in good agreement with the weighted mean 
described in Sect. 4.4.1. However, the combined fit gave 
an unacceptable value of x2/d.o.f.  = 93, some ten times 
greater than expected from the sum of the Z 2 values of  
the separate fits. This large value of g 2 was mainly con- 
tributed by the 27~E c and B w variables; if these two were 
removed a combined fit to the remaining five variables 
yielded as = 0.121 with x2/d.o.f.  = 8.8. The procedure of  
allowing the x u values to vary is not so obviously rea- 
sonable in the N L L A  case as in the ~ ( ~ 2 )  analysis. 
Nevertheless, if such a fit is performed, an acceptable ~2 
may be achieved with all seven observables, but with a 
large value as = 0.143 and x u >> 1 for all observables. This 
seems to be needed in order to accommodate .SEE c, where 
a reduction of  as to around 0.120 would lead to a large 
increase in x2/d.o.f..  A fit to the remaining six observ- 
ables with x u free gives as=0.121,  with x Z / d . o . f .  = 7.7 
and all x u values in the vicinity of  unity. Alternatively, a 
fit to all seven observables, but using the R-matching 
scheme for 2TEE c yields a s = 0.124 with g2/d.o.f.  = 7.9 and 
x u values close to unity. Similar results may be obtained 
from a combined fit (excluding R 2 and r in which x u 

is fixed to 1 while the subleading coefficient G32 is allowed 
to vary independently for each observable. 

Thus, these combined fits indicate that, given the pre- 
sently available calculations, 27EEC, and to a lesser extent 
B w ,  cannot be described by N L L A +  G ( a ~ )  QCD si- 
multaneously with the other observables, particularly if 
x u = 1 is assumed. Nonetheless, an average value of 
~ ( M z o )  around 0.120 seems quite reliable. 

5 Discussion and summary 

Resummed QCD calculations have been introduced in an 
at tempt to describe the two-jet region in e+e - hadronic 
final states. In this region the previously available 
~Y(0~s 2) QCD matrix elements were clearly insufficient 
because of  the presence of large logarithms connected 
with soft and collinear singularities. Resummed calcu- 
lations are now available for seven observables, which 
we have studied in this analysis. Two of the observables, 
B~ and B w ,  had not been studied in e+e - annihilation 
before the calculations were performed, and therefore 
constitute a new test of  the theory. Although jet rates 
have been extensively studied before, the Durham jet 
finder is comparatively new and measurements for R 2 and 
r were not available before the calculations. The cal- 
culations should be most  secure for (1 - T), M,/, B r and 
B w,  for which complete resummation of leading and next- 



17 

to-leading logarithms was done. For  the jet rates only 
part  of  the next-to-leading logarithms were resummed, 
while the analytic solution of the ,SEE c calculation in [24] 
introduced an unphysical pole which limits the region of 
applicability of the theory�9 

Comparison of  the theory with data in Figs. 2 and 3 
shows that a good qualitative description of  the data in 
the two-jet region is obtained�9 However, in this region 
the corrections which relate the observed hadron level to 
the par ton level where the QCD calculations are relevant 
are, at present energies, large and subject to significant 
uncertainties�9 We have therefore chosen to combine the 
N L L A  and ~ ( ~ 2 )  calculations, and fit to data in the 
region where the hadronization corrections are reason- 
ably small and reliable�9 However, in the more extreme 
hard region the higher order contributions which are ab- 
sent f rom the ~ ( ~ s  2) theory are not necessarily domi- 
nated by the leading logarithms which we include in the 
present approach, and the leading logarithmic terms could 
even have an opposite sign from the uncomputed higher 
orders�9 Thus in this region the inclusion of the N L L A  
terms could even degrade the description of data, as seen 
particularly for MI- I  and B w in Fig. 2. 

The N L L A +  ~(~t{) QCD calculations, with renor- 
malization scale factor x u = 1, were found to give rea- 
sonable fits to the OPAL data. In some cases the fits were 
better than those obtained using ~ ( ~ 2 )  QCD alone with 
x u = 1, though no better than ~Y (~ 2) fits with optimized 
scale�9 However, the ~Y(~)  fits where x u was optimized 
generally yielded values x u < 0.1, whilst such low values 
of  x u were clearly disfavoured by the N L L A +  ~Y(ct~) 
calculations. The dependence of ~s (Mzo)  on the choice 
of  x u was slightly weaker when the resummed theory was 
included, but still remained the principal source of  sys- 
tematic uncertainty. 

Table 10 shows the final results for 0~ s ( M z o )  obtained 
f rom each of the seven observables using N L L A +  

Table 10. Summary of values of ~t~ ( M z o )  derived from each of the 
seven observables using the NLLA+ ~(ct 2) QCD calculations. 
Values based on simple ~Y(ct~) QCD are given for comparison 

o:~(Mzo) o~,(Mzo) 

NLLA + ~(~z) ~(ct 2) only 

(1 T) + 0�9 
- 0.121 _ 0.008 0.123 • 0.013 

M~/ 0.119 + 0.008 - 0.007 0.123 + 0.007 

Br 0 120 + 0.014 " -0�9 0.136• 

0 110 + 0.006 
B w  " -0.005 0.122• 

0.132 + 0.008 0.120 • 0.009 27EEC - 0.007 

R E 0.122 + 0.007 0.119 + 0.010 

M/" 0 123 + 0.009 
�9 -0�9 0.122+0.012 

Weighted mean 0.120 + 0.006 0.122 • 0.007 

O@) 
OPAL 

( a )  
(l-T) 

MrI 

B T 

B w  

7-~EC 
R 2 

N o 
I [ I I I 
0.11 0.1 0.12 0.13 0.14 0.15 

~Xs(M z) 

(l-T) .......... OPAL 

MH (b) 

B T : , ~ : :  �9 

U w : , ,  

~EEC 
Rz ~ ' ~ "  '~ 

N 
:::::::::::::::::::::: ~:~ ~ : 

0.1 0.11 0.12 0.13 0.14 0.15 
~s(Mz) 

Fig. 7. Values of ct~(Mzo ) derived from ~(ct 2) fits to the OPAL 
data: a values at x u = 1, where the error bars denote the experi- 
mental uncertainties only, b values based on the average of x,, = 1 
and optimised x u, where the total errors, including hadronization 
and higher order effects, are shown�9 The vertical line and the shaded 
region represent the weighted mean value and its error 

~ ( a ~ )  QCD, with the corresponding results obtained 
from the same data using G(~s  2) QCD alone for com- 
parison. The experimental errors were essentially the same 
for both  approaches, and the same as in our previous 
publication [5]. The hadronization uncertainties were es- 
timated in the same way for both sets of  measurements, 
though a larger range of  hadronization models was con- 
sidered than in our previous paper [5]. As in our previous 
work a wider variation of 1 < Qo < 6 GeV was con- 
sidered for the ~ ( ~ 2 )  analysis�9 The principal difference 
between the N L L A  and ~(0~ 2) analyses was however the 
treatment of  the renormalization scale uncertainty; in the 
N L L A +  G(ct 2) case we took x u = 1 as the central value, 
assigning an error by considering the range 0.5 < x u < 2, 
while in the G(~2)  analysis we followed our procedure 
in [5], taking the central value to be the mean of the 
values o f~s (Mzo  ) f rom x ,  = 1 and x u fitted, and quoting 
half their difference as the error. Figures 6 and 7 show 
the values of  as so obtained, together with their weighted 
means. 

Neither the O(~  2) nor the N L L A +  ~ ( ~ s  2) calcula- 
tions give a consistent description of the data with x u = 1 
if only experimental errors are taken into account�9 After 
making due allowance for systematic uncertainties the 
G ( ~  2) measurements are compatible with a common 
mean value of 0.122 • 0�9149 These conclusions are con- 
sistent with our previous study of thirteen observables to 
G ( ~  2) [5], only three of  which (T, M n a n d  R2) are shared 
with the present study�9 The value obtained here is very 
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+ 0.006 
close to that  obtained in [5], 0 .122_0 .005 .  When  the 

systematic uncertainties are taken into account  in the 
N L L A +  ~ ( a s  2) analysis, we find that  the individual 
measurements  are compatible with a c o m m o n  mean of  
0 .120•  which is in excellent agreement with the 
~ ( ~ )  analysis. However,  because the systematic uncer- 
tainties are correlated it is not  clear that  the values o f  as 
obtained f rom the Bee and XEE c variables are really com- 
patible with this value. The case o f  B w is somewhat  dis- 
appointing,  since this variable has the smallest overall 
error, with a particularly weak hadronizat ion uncer- 
tainty. Nonetheless,  the values derived f rom B w and XEE c 
lie within two s tandard deviations o f  the weighted mean, 
which therefore seems a reasonable estimate o f  a s. In  the 
~ ( a ~ )  analysis the Bee and XEE c observables exhibit no 
anomalous  behaviour.  

In previous measurements  o f  as based on ~ ( a ~ )  Q C D  
the main  uncertainty was the effect o f  missing higher 
order  terms, manifested particularly in the renormaliza- 
t ion scale dependence. In the present study the N L L A  
calculations have been used to supplement the G ( a ~ )  
theory with some higher order  information.  However,  the 
N L L A +  6~(a~) calculations have not  brought  about  a 
dramat ic  reduction in the error on as. This is part ly be- 
cause the observables which showed the smallest scale 
dependence in ~ ( a ~ )  (such as the asymmetry  in the EEC 
or the jet mass difference) have not  so far proved ame- 
nable to resummation.  Nevertheless, the inclusion of  the 
N L L A  terms has removed the need to consider very small 
renormalizat ion scales; indeed the data  are incompatible 
with such scales. After investigating several ways to com- 
bine the measurements  o f  as we quote as our  final result 
that  based on a simple weighted average: 

oe s (Mzo)  = 0.120 • 0.006. 

The error is competit ive with, but  marginally larger than 
that  obtained in our  previous 6~(a~) measurement  [5]. 
It  also agrees well with the N L L A  + G (a~) measurement  
in [5], and with other measurements  o f  as at LEP  and 
elsewhere, summarized in [18]. The error  is however  
slightly smaller than that  resulting f rom an ~ (a ~) anal- 
ysis performed on the present data. This new result based 
on N L L A  + W(a~)  Q C D  is therefore an impor tant  mea- 
surement, complementary  to those obtained f rom 
~ ( a s  2) Q C D ;  the fact that  they are in such good  agree- 
ment  gives us confidence that  higher order uncertainties 
are under  control  at the level o f  the errors which we 
quote. 
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