

CHAPTER TWO

³¹P NMR Studies of Phospholipids

Andrei V. Filippov*,[†],¹, Aidar M. Khakimov[†], Bulat V. Munavirov[†] *Chemistry of Interfaces, Lulea University of Technology, Lulea, Sweden

Contents

1.	Introduction	28
2.	Basics of ³¹ P NMR	30
3.	³¹ P NMR in Biomembranes	31
4.	Nonoriented Phospholipid Systems	35
5.	Phospholipid Mesophases	47
6.	Oriented Bilayers	49
7.	Temperature and pH Effects	50
8.	Acidic Lipids	53
9.	Cholesterol and "Rafts"	57
10.	Phospholipid/Peptide Systems	72
11.	Conclusion	72
Acknowledgments		85
References		85

Abstract

³¹P nuclear magnetic resonance (NMR) can provide information on the composition of phospholipid (PL) membranes, lipid headgroup orientation relative to the bilayers normal, and the phase state of PL systems. Interaction of the membrane with ions, drugs, other small molecules and peptides may lead to lipid phase change and lamellar phase disturbances, which can also be revealed in ³¹P NMR spectra. Traditional ³¹P NMR spectroscopy has been used for years, mainly to study lipid phase state. In the last few years, however, its utility has been extended by a number of solid-state methods in fieldcycling spectroscopy. Membrane mimicking systems have been complemented with bicelles, which are more convenient for studying peptide structure in lipid-peptide interactions. Another challenge is the study of ordered membrane domains (rafts) induced in the presence of cholesterol or certain proteins. As a result, recent work has refined the structure of PL headgroups and elucidated membrane responses to interactions with peptides and other molecules. Selected examples of such fascinating investigations are presented here.

Keywords: ³¹P NMR, Cholesterol, Lipid rafts, Lipid bilayers, Lipid mesophases, Lipid/ peptide systems, Phospholipids

[†]Institute of Physics, Kazan Federal University, Kazan, Russian Federation

¹Corresponding author: e-mail address: andrey.filippov@kpfu.ru