Theoretical Foundations of Chemical Engineering 2009 vol.43 N5, pages 752-757

Genesis of the structure and the phase and elemental compositions of an aluminum oxide catalyst in the isomerization process of n-butylenes

Lamberov A., Basheva I., Sitnikova E., Aptikasheva A., Gil'Manov K., Egorova S., Kamalov B. Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

An investigation of the changes in the characteristics of the porous structure, phase, and elemental compositions of catalyst samples for the isomerization of n-butylenes using a set of physicochemical methods has been conducted. In has been established that under hydrothermal conditions of the isomerization process, aluminum oxide recrystallization takes place, resulting in a decrease of its specific surface value and a displacement of the maximum of the distribution of pore diameters to the region of greater values. A porous structure transformation scheme has been suggested while operating the isomerization catalyst for n-butylenes. It has been supposed that the partial phase change of γ -Al2O3 into δ -Al 2O3 occurring under industrial conditions of the isomerization of n-butylenes is caused by an accumulation of metal compound admixtures supplied with the feed flow. © 2009 Pleiades Publishing, Ltd.

http://dx.doi.org/10.1134/S0040579509050248