Soil Biology & Biochemistry 80 (2015) 199-208

Contents lists available at ScienceDirect

Soil Biology & Biochemistry

journal homepage: www.elsevier.com/locate/soilbio

Biochemistry of hexose and pentose transformations in soil analyzed by position-specific labeling and ¹³C-PLFA

Carolin Apostel^{a, 1}, Michaela Dippold^{b, c, *, 1}, Yakov Kuzyakov^{a, b, d}

^a Department of Soil Science of Temperate Ecosystems, Georg-August-University Goettingen, Germany

^b Department of Agricultural Soil Science, Georg-August-University Goettingen, Germany

^c Department of Agroecosystem Research, BayCEER, University of Bayreuth, Germany

^d Institute of Environmental Sciences, Kazan Federal University, Russia

ARTICLE INFO

Article history: Received 5 December 2013 Received in revised form 28 August 2014 Accepted 3 September 2014 Available online 17 October 2014

Keywords:

Monosaccharide transformation Isotopic approaches Metabolic tracing Carbon sequestration Carbon cycle Biomarkers

ABSTRACT

Microbial transformations are key processes of soil organic matter (SOM) formation, stabilization and decomposition. Combination of position-specific ¹³C labeling with compound-specific ¹³C-PLFA analysis is a novel tool to trace metabolic pathways. This combination was used to analyze short-term transformations (3 and 10 days after tracer application) of two key monosaccharides: glucose and ribose in soil under field conditions. Transformations of sugars were quantified by the incorporation of ¹³C from individual molecule positions in bulk soil, microbial biomass (by CFE) and in cell membranes of microbial groups classified by ¹³C-PLFA.

The ¹³C incorporation in the Gram negative bacteria was higher by one order of magnitude compared to all other microbial groups. All of the ¹³C recovered in soil on day 3 was allocated in microbial biomass. On day 10 however, a part of the ¹³C was recovered in non-extractable microbial cell components or microbial excretions. As sugars are not absorbed by mineral particles due to a lack of charged functional groups, their quick mineralization from soil solution is generally expected. However, microorganisms transformed sugars to metabolites with a slower turnover. The ¹³C incorporation from the individual glucose positions into soil and microbial biomass showed that the two main glucose utilizing pathways in organisms – glycolysis and the pentose phosphate pathway – exist in soils in parallel. However, the pattern of ¹³C incorporation from individual glucose position-specific incorporation of ribose C also shows initial utilization in the pentose phosphate pathway but is overprinted on day 10, again due to intensive recycling and mixing. This shows that glucose and ribose – as ubiquitous substrates – are used in various metabolic pathways and their C is intensively recycled in microbial biomass.

Analyzing the fate of individual C atoms by position-specific labeling deeply improves our understanding of the pathways of microbial utilization of sugars (and other compounds) by microbial groups and so, of soil C fluxes.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Soil organic carbon (SOC) plays a major role within the global C cycle as soils can function as a source or sink of atmospheric C. Plant residues and rhizodeposits are the main sources of organic matter in soils (Rasse et al., 2005). Therefore, many studies have focused on

E-mail address: midipp@gmx.de (M. Dippold).

decomposition, microbial utilization and stabilization processes of C from these sources in soils.

The low molecular weight organic substances (LMWOS) play a crucial role within the C cycle in soil. Although their portion of SOC is quite low, they represent the SOC pool with the highest turnover (1-10 h mean residence time) and a quantitatively relevant gross flux of C passes through this pool (30% of total CO₂ efflux) (van Hees et al., 2005). LMWOS are defined as the lightest components of dissolved organic carbon (DOC) with a molecular weight lower than 250 Da (Boddy et al., 2007). Their main sources are exoenzymatic depolymerization of above- and belowground litter as well as rhizodeposition. Microorganisms determine the fate of LMWOS in

^{*} Corresponding author. Department of Agricultural Soil Science, Georg-August-University Goettingen, Germany.

¹ Equal contribution.