Statistics and Probability Letters 79 (2009) 1823-1828

Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

High order approximation for the coverage probability by a confident set centered at the positive-part James-Stein estimator

S. Ejaz Ahmed^a, Andrei I. Volodin^{b,*}, Igor N. Volodin^c

^a Department of Mathematics and Statistics, University of Windsor, Windsor, Ontario N9B 3P4 Canada ^b Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan S4S 4G2 Canada ^c Department of Mathematical Statistics, Kazan State University, Kazan, Kremlevskaya st. 18, 420008, Russia

ARTICLE INFO

Article history: Received 7 September 2008 Received in revised form 9 May 2009 Accepted 11 May 2009 Available online 22 May 2009

MSC. primary 62E20 secondary 62F10

ABSTRACT

In this paper we continue our investigation connected with the new approach developed in Ahmed et al. [Ahmed, S.E., Saleh, A.K.Md.E., Volodin, A., Volodin, I., 2006. Asymptotic expansion of the coverage probability of James-Stein estimators. Theory Probab. Appl. 51 (4) 1-14] for asymptotic expansion construction of coverage probabilities, for confidence sets centered at James-Stein and positive-part James-Stein estimators. The coverage probabilities for these confidence sets depend on the noncentrality parameter τ^2 , the same as the risks of these estimators. In this paper we consider only the confidence set centered at the positive-part James-Stein estimator. As is shown in the above-mentioned reference, the new approach provides a method to obtain for the given confidence set, an asymptotic expansion of the coverage probability as one formula for both cases $\tau \to 0$ and $\tau \to \infty$. We obtain the third terms of the asymptotic expansion for both mentioned cases, that is, the coefficients at τ^2 and τ^{-2} . Numerical illustrations show that the third term has only a small influence on the accuracy of the asymptotic estimation of coverage probability.

Crown Copyright © 2009 Published by Elsevier B.V. All rights reserved.

1. Introduction

The problem of confidence estimation of the mean vector $\theta = (\theta_1, \dots, \theta_p)$ for the *p*-dimensional normal distribution with independent components and equal variances $\sigma^2 = 1$ is considered. Let $\bar{X} = (\bar{X}_1, \dots, \bar{X}_p)$ be the vector of sample means calculated by samples of common size n from the marginal distributions. The confidence set

$$D_{\bar{X}} = \left\{ \theta : n \sum_{1}^{p} (\theta_i - \bar{X}_i)^2 \le c^2 \right\}$$

has the given confidence coefficient $1 - \alpha$, if c^2 is the quantile of chi-square distribution with p degrees of freedom given by the relation $K_p(c^2) = 1 - \alpha$, where $K_p(\cdot)$ is the chi-square distribution function.

This confidence set possesses the minimax property, but there exist other minimax sets that obtain bigger coverage probability for all values of the noncentrality parameter $\tau^2 = n \|\theta\|^2$ if $p \ge 4$. In this paper we consider one of these sets

$$D_{\delta^+} = \{ \theta : n \| \theta - \delta^+(X) \|^2 \le c^2 \},\$$

which is centered at the positive-part James and Stein (1961) estimator given by

$$\delta^{+}(\bar{X}) = \left(1 - \frac{p-2}{n\|\bar{X}\|^2}\right) \bar{X} \mathbf{I}\{n\|\bar{X}\|^2 > p-2\}$$

Corresponding author, Fax: +1 306 585 4020.

E-mail addresses: seahmed@uwindsor.ca (S.E. Ahmed), andrei@math.uregina.ca (A.I. Volodin), igor.volodin@ksu.ru (I.N. Volodin).

^{0167-7152/\$ -} see front matter Crown Copyright © 2009 Published by Elsevier B.V. All rights reserved. doi:10.1016/j.spl.2009.05.009