Physical Review B - Condensed Matter and Materials Physics 2012 vol.86 N1

Evolution of spin relaxation processes in LiY 1-xHo xF 4 studied via ac-susceptibility and muon spin relaxation

Johnson R., Malkin B., Lord J., Giblin S., Amato A., Baines C., Lascialfari A., Barbara B., Graf M. Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

We present measurements of magnetic field and frequency dependence of the low-temperature (T = 1.8 K) ac-susceptibility and temperature and field dependence of the longitudinal field positive muon spin relaxation (μ SR) for LiY 1-xHo xF 4 with x = 0.0017, 0.0085, 0.0408, and 0.0855. The fits of numerical simulations to the susceptibility data for the x = 0.0017, 0.0085, and 0.0408 show that Ho-Ho cross-relaxation processes become more important at higher concentrations, signaling the crossover from single-ion to correlated behavior. We simulate the muon spin depolarization using the parameters extracted from the susceptibility, and the simulations agree well with our data for samples with x = 0.0017 and 0.0085. The μ SR data for samples with x = 0.0408 and 0.0855 at low temperatures (T < 10 K) cannot be described within a single-ion picture of magnetic field fluctuations and give evidence for additional mechanisms of depolarization due to Ho3 + correlations. We also observe an unusual peak in the magnetic field dependence of the muon relaxation rate in the temperature interval 10-20 K that we ascribe to a modification of the Ho3 + fluctuation rate due to a field induced shift of the energy gap between the ground and the first excited doublet crystal field states relative to a peak in the phonon density of states centered near 63 cm -1. © 2012 American Physical Society.

http://dx.doi.org/10.1103/PhysRevB.86.014427