Journal of Optical Technology (A Translation of Opticheskii Zhurnal) 2014 vol.81 N8, pages 423-426

Broad-band sources of single-photon pulses, based on spontaneous parametric scattering in nonlinear impurity crystals

Akat'Ev D., Kalachev A., Samartsev V., Latypov I., Shkalikov A. Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

This paper discusses the possibilities of using spontaneous parametric scattering (SPS) in impurity crystals with a periodic domain structure for the efficient generation of narrow-band single-photon pulses. Using a periodically poled potassium titanyl phosphate crystal doped with trivalent erbium ions as an example, it is shown that, in the case of a nonlinear crystal with a periodic domain structure, allowing the generation of photons on the opposite sides, the width of the SPS spectrum can be less than the free spectral zone of a single-cavity parametric generator based on this crystal. Such an SPS regime can be useful when creating narrow-band sources of single-photon states that can be recorded and reproduced in optical quantummemory devices, as well as for combining SPS processes and quantum memory in a single medium-a nonlinear impurity crystal. © 2014 Optical Society of America.

http://dx.doi.org/10.1364/JOT.81.000423