Physics of the Solid State 2007 vol.49 N11, pages 2086-2090

Identification of the La6F37 cubooctahedral clusters in mixed crystals (BaF2)1 - X (LaF3) x by the electron paramagnetic resonance method

Aminov L., Kurkin I., Kurzin S., Gromov I., Mamin G., Rakhmatullin R. Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

The electron paramagnetic resonance (EPR) spectra of mixed crystals (BaF2)1 - x (LaF3) x (x =0, 0.001, 0.002, 0.005, 0.010, 0.020) doped with Ce3+ ions (0.1%) are investigated at a frequency $v \approx 9.5$ GHz in magnetic fields up to 1.45 T at temperatures T = 10 and 15 K. The EPR spectrum of "pure" barium fluoride BaF2 (x = 0) is characterized by a single Ce 3+-F- center with tetragonal symmetry (i.e., the O center with $g \parallel = 2.601$ and $g \perp = 1.555$). For a lanthanum trifluoride concentration x 0, the spectrum exhibits new lines due to the presence of the clusters containing Ce3+ and La3+ ions. The intensity of EPR signals from the O centers decreases rapidly as the lanthanum trifluoride concentration x increases. The lines attributed to a paramagnetic center with tetragonal symmetry and strongly anisotropic g factors (i.e., the K center with g || = 0.725 and g \perp = 2.52) are separated in the complex EPR spectrum with the use of the angular dependence of the EPR signal intensity measured for the samples with x > 10.002. This center is identified as a cubooctahedral cluster of the La 6F37 type in which one of the La3+ ions is replaced by the Ce3+ ion. © 2007 Pleiades Publishing, Ltd.

http://dx.doi.org/10.1134/S1063783407110121