Crystallography Reports 2014 vol.59 N3, pages 399-406

Phase states of the gypsum thermal-annealing derivatives according to electron spin resonance spectra

Khasanov R., Nizamutdinov N., Khasanova N., Salimov R., Kadyrov R., Vinokurov V. Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

The electron spin resonance (ESR) spectra of SO 3 - and SO 2 - radical ions with a linewidth Δ H ≈ 2.7 G and SO 3 - (A 1) and SO 3 - (A 2) centers with superhyperfine splitting due to the interaction with protons in platelike gypsum single crystals under X-ray irradiation have been analyzed at 25°C. Dehydrated regions with a radius >4 Å are revealed in gypsum. The ESR spectra of SO 3 - radical ions and atomic hydrogen with Δ H ≈ 0.3 G are found in the products of isothermal annealing of gypsum kept for 30 min after X-ray irradiation at 25°C. The dependences of the intensities of these spectra on the annealing temperature are studied in the range of 100-450°C. The temperature range of formation of α - and β -phase states of bassanite and γ -anhydrite are determined. The process of residual water redistribution between the channel systems of the α - and β -phase types of γ -CaSO4 in gypsum thermal derivatives is established. © 2014 Pleiades Publishing, Inc.

http://dx.doi.org/10.1134/S1063774514030110