

Available online at www.sciencedirect.com

ScienceDirect

Mendeleev Commun., 2015, 25, 432-434

brought to you by T CORE

Mendeleev Communications

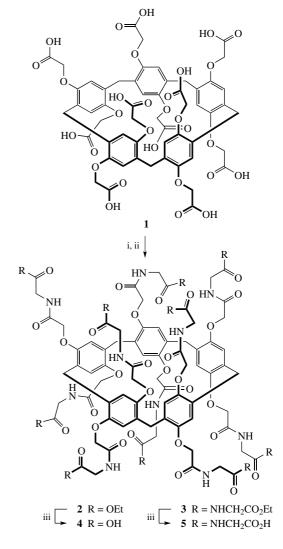
Synthesis of new decasubstituted pillar[5]arenes containing glycine fragments and their interactions with Bismarck brown Y

Dmitry N. Shurpik,^{*a*} Pavel L. Padnya,^{*a*} Liliya T. Basimova,^{*a*} Vladimir G. Evtugin,^{*a*} Vitaliy V. Plemenkov^{*b*} and Ivan I. Stoikov^{**a*}

^a A. M. Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 420008 Kazan, Russian

Federation. Fax: +7 8432 752 253; e-mail: Ivan.Stoikov@mail.ru

^b Institute of Biochemistry, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russian Federation


DOI: 10.1016/j.mencom.2015.11.011

New water-soluble decasubstituted pillar[5]arenes containing glycine and glycylglycine fragments were synthesized and characterized. The UV, DLS and TEM study showed that interaction of self-associates of the glycylglycine derivatives with Bismarck brown Y produced particles of about 59 nm in size.

Azo dyes have found various applications in science, medicine and technology.^{1–3} Despite the fact that most water-soluble dyes are weakly reactive and non-toxic at low concentrations, they appear to be main source of water pollution, and pose a serious threat to the environment.³ Meanwhile, nanoparticles covalently linked or associated with chromophoric or fluorophoric substances have potential use in sensors, biomimetic systems, as catalysts, selective extractants and drug delivery systems.^{4–10} We have recently proposed¹¹ the use of a new class of macrocycles, pillar[5]arenes, as synthetic blocks for constructing water soluble nanoparticles capable of interacting with azo dyes. The p-hydroquinone fragments of these macrocycles are linked to each other by methylene bridges.¹² Pillar[n]arenes contain an internal hydrophobic cavity with a diameter comparable to the cavity diameter of corresponding cyclodextrins and cucurbit[n]urils.¹³ Pillar[n]arenes similarly to cyclodextrins and cucurbit[n]urils tend to form host-guest complexes with organic and inorganic 'guests'. A distinctive feature of pillar[n]arene is the presence of free hydroxyl groups that can be variously functionalized.14-16

Previously, self-assembled amphiphilic functionalized pillar-[5]arenes^{17,18} and supramolecular polymers¹⁹⁻²⁴ based on inclusion complexes consisting of linear (with carbon number ≥ 6) molecule fragments in the cavity of the macrocycle were described in the literature. However, there is no data on the possible formation of self-associates by decafunctionalized pillar[5]arenes. On the other hand, structural proteins elastin and collagen are rich in glycine.²⁵ Collagen fibrils represent a major component in the extracellular matrix and connective tissue providing support for cells.²⁶ Thus, we hypothesize that attachment of glycine and glycylglycine fragments to pillar[5]arenes can promote selfaggregation and affinity to various biomacromolecules.

The starting decaacid **1** was synthesized from commercially available reagents according to the published procedures²⁷ (Scheme 1). It was converted into decachloride by treatment with thionyl chloride in the presence of catalytic amount of DMF.²⁸ Further acylation of glycine and glycylglycine ethyl ester hydrochlorides with this decachloride gave compounds **2** and **3** in 78 and 70% yields, respectively (see Scheme 1). The acylation proceeded in anhydrous dichloromethane in the presence of triethylamine for 48 h.[†]

Scheme 1 Reagents and conditions: i, SOCl₂, reflux; ii, glycine/glycylglycine ester hydrochloride, Et₃N/CH₂Cl₂; iii, LiOH, H₂O/THF, room temperature, then HCl.

of SOCl₂ (10 ml, 0.084 mol) and catalytic amount of DMF. The mixture was refluxed for 18 h and then the excess of SOCl₂ was removed under reduced pressure. The remainder was dried under reduced pressure for 2 h. The obtained residue was dissolved in 10 ml of dichloromethane. The

[†] *General procedure for the synthesis of compounds* **2** *and* **3**. 4,8,14, 18,23,26,28,31,32,35-Decakis(methoxycarbonyl)pillar[5]arene **1** (0.30 g, 0.252 mmol) was placed into the round-bottom flask followed by addition