First neutral dinuclear cobalt complex formed by bridging $\left[\mu-\mathrm{O}_{2} \mathrm{P}(\mathrm{H}) \mathrm{R}\right]^{-}$ ligands: synthesis, X-ray crystal structure and quantum-chemical study

Dmitry G. Yakhvarov, ${ }^{* a, b}$ Ekaterina A. Trofimova, ${ }^{a}$ Alexey B. Dobrynin, ${ }^{a}$ Tatiana P. Gerasimova, ${ }^{a}$ Sergey A. Katsyuba ${ }^{a}$ and Oleg G. Sinyashin ${ }^{a}$
${ }^{a}$ A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center of the Russian Academy of Sciences, 420088 Kazan, Russian Federation. Fax: +7 8432 732253; e-mail: yakhvar@iopc.ru
${ }^{b}$ A. M. Butlerov Institute of Chemistry, Kazan Federal University, 420008 Kazan, Russian Federation

DOI: 10.1016/j.mencom.2015.01.009
The reaction of cobalt dibromide hexahydrate with 2, 2^{\prime}-bipyridine (bpy) and 9-anthrylphosphinic acid $\mathrm{AntP}(\mathrm{O})(\mathrm{OH}) \mathrm{H}$ (Ant = 9-anthryl) leads to the first example of a neutral dinuclear cobalt(II) complex $\left\{\mathrm{Co}_{2} \mathrm{Br}_{2}\left[\mu-\mathrm{O}_{2} \mathrm{P}(\mathrm{H}) \mathrm{Ant}\right]_{2}(\mathrm{bpy})_{2}\right\}$ formed by two bridging $\left[\mu-\mathrm{O}_{2} \mathrm{P}(\mathrm{H}) \mathrm{Ant}\right]^{-}$ ligands. The complex has been characterized by X-ray diffraction analysis and quantum-chemical calculations.

The development of new inorganic and organic materials is the aim of science and technology. ${ }^{1}$ After the pioneering works of Tomic ${ }^{2}$ and later works of Hoskins and Robson, ${ }^{3}$ new types of solid polymeric materials classified as metal-organic frameworks (MOFs) became known. ${ }^{1}$ The structure of these polymers includes metal ions linked by organic fragments bonded by σ or π interaction. MOFs are important for gas storage ${ }^{4}$ and gas separation ${ }^{5}$ devices, nonlinear optics, ${ }^{6}$ magnetically active materials, ${ }^{7}$ etc..8 The dinuclear organometallic complexes of $\mathrm{Ni}^{\mathrm{II}}, \mathrm{Zn}^{\mathrm{II}}$, $\mathrm{Co}^{\mathrm{II}}$ and $\mathrm{Mn}^{\mathrm{II}}$ are the important intermediates of biological processes involved in the catalytic hydrolysis of peptides and phosphate esters via the formation of $\{\mu-\mathrm{O}-\mathrm{P}-\mathrm{O}\}$ bridged organometallic complexes. ${ }^{9}$ These species play a central role in oxidative phosphorylation, ${ }^{10}$ oxidative decarboxylation ${ }^{11}$ and energy transduction. ${ }^{12}$ In some cases, they act as catalysts increasing the rate of biological processes by a factor of up to $10^{5} .{ }^{13,14}$

However, a very restricted number of dinuclear metal complexes formed by bridging phosphinate $\left[\mu-\mathrm{O}_{2} \mathrm{P}(\mathrm{H}) \mathrm{R}\right]^{-}$ligands, i.e., bearing the P-H moiety, are currently known. ${ }^{15}$ The examples include aluminum, ${ }^{16}$ zinc, ${ }^{17}$ nickel ${ }^{18}$ and cobalt ${ }^{19}$ dinuclear complexes. Note that neutral transition metal complexes formed by bridging $\left[\mu-\mathrm{O}_{2} \mathrm{P}(\mathrm{H}) \mathrm{R}\right]^{-}$ligands were not described, while the $\mathrm{P}-\mathrm{H}$ bond in a complex molecule can be responsible for catalytic activity in hydrogenation and proton transfer processes. ${ }^{20}$

Here, we report the synthesis and crystal structure of neutral dinuclear cobalt complex $\left\{\mathrm{Co}_{2} \mathrm{Br}_{2}\left[\mu-\mathrm{O}_{2} \mathrm{P}(\mathrm{H}) \mathrm{Ant}\right]_{2}(\mathrm{bpy})_{2}\right\} \mathbf{1}$ (Ant $=9$-anthryl and bpy $=2,2^{\prime}$-bipyridine). Complex $\mathbf{1}$ was prepared in 43% yield at room temperature from 9 -anthrylphosphinic acid $\operatorname{AntP}(\mathrm{O})(\mathrm{OH}) \mathrm{H},{ }^{18} \mathrm{CoBr}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and 2, 2^{\prime}-bipyridine in ethanol as a solvent (Scheme 1). ${ }^{\dagger}$

According to single-crystal X-ray diffraction data, ${ }^{\ddagger}$ complex 1 forms a centrosymmetric dimer in which the two Co atoms are bridged by two $\left[\mu-\mathrm{O}_{2} \mathrm{P}(\mathrm{H}) \mathrm{Ant}\right]^{-}$ligands (Figure 1). The

[^0]

Scheme 1
$\mathrm{P}-\mathrm{O}-\mathrm{Co}-$ containing eight-membered heterocycles adopt a chair conformation as in cationic cobalt(II) complex $\left\{\mathrm{Co}_{2}\left[\mu-\mathrm{O}_{2} \mathrm{P}(\mathrm{H})\right.\right.$ $\left.\mathrm{Mes}]_{2}(\text { bpy })_{4}\right\} \mathrm{Br}_{2} 2$ (Mes = 2,4,6-trimethylphenyl) described previously. ${ }^{19}$ The cobalt atoms in complex 1 have a slightly distorted trigonal-bipyramidal coordination with a cis arrangement of the oxygen atoms, while they display an octahedral coordination in complex $\mathbf{2}$. Ant substituents in $\mathbf{1}$ adopt an almost perpendicular orientation to the $\mathrm{P}(1)-\mathrm{O}(2)$ bond [torsion angles: $\mathrm{O}(2) \mathrm{P}(1) \mathrm{C}(2) \mathrm{C}(15),-73.0(6)^{\circ}$ and $\left.\mathrm{O}(1) \mathrm{P}(1) \mathrm{C}(2) \mathrm{C}(3),-27.8(7)^{\circ}\right]$.

Figure 1 ORTEP view of complex $\left\{\mathrm{Co}_{2} \mathrm{Br}_{2}\left[\mu-\mathrm{O}_{2} \mathrm{P}(\mathrm{H}) \mathrm{Ant}\right]_{2}(\mathrm{bpy})_{2}\right\} \mathbf{1}$ (hydrogen atoms are omitted for clarity). Selected bond distances (\AA) and angles $\left(^{\circ}\right.$): $\mathrm{Co}(1)-\mathrm{Br}(1) 2.485(3), \mathrm{Co}(1)-\mathrm{N}(1) 2.139(6), \mathrm{Co}(1)-\mathrm{N}(2) 2.098(6)$, $\mathrm{Co}(1)-\mathrm{O}(1) 1.982(5), \mathrm{Co}(1)-\mathrm{O}(2) 1.988(5), \mathrm{P}(1)-\mathrm{O}(1) 1.490(5), \mathrm{P}(1)-\mathrm{O}(2)$ $1.499(5), \mathrm{P}(1)-\mathrm{C}(2) 1.811(7) ; \mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{O}(2) 114.44(19), \mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(2)$ 116.6(3), $\mathrm{Co}(1)-\mathrm{O}(1)-\mathrm{P}(1)$ 143.1(3), $\mathrm{Co}(1)-\mathrm{O}(2)-\mathrm{P}(1)$ 139.3(3).

[^0]: ${ }^{\dagger}$ For details, see Online Supplementary Materials.
 ${ }^{*}$ Crystal data for $\mathbf{1}$: purple crystal, $\mathrm{C}_{48} \mathrm{H}_{36} \mathrm{Br}_{2} \mathrm{Co}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}_{2}(M=1072.41)$, triclinic, space group $P \overline{1}$, at $293(2) \mathrm{K}: a=10.110(8), b=10.731(10)$ and $c=11.081(10) \AA, \alpha=89.393(16)^{\circ}, \beta=86.171(16)^{\circ}, \gamma=63.180(14)^{\circ}$, $V=1070.2(16) \AA^{3}, Z=1, d_{\text {calc }}=1.664 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=2.768 \mathrm{~mm}^{-1}, R_{\text {int }}=0.068$, $\theta_{\max }=27.0$. Bruker Smart Apex II CCD diffractometer, 12103 reflections collected, 3106 observed reflections with $I>2 \sigma(I)$, final $R=0.0666$, $w R_{2}=0.1876,4633$ unique reflections with $F^{2} \geqslant 2 \sigma(I), S=1.031$.

 CCDC 1023205 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk.

