

Available online at www.sciencedirect.com

Mendeleev Communications

Reactions of 2-(5-methyl-2-phenyl-2*H*-1,2,3-diazaphosphol-4-yl)-4*H*-1,3,2-benzodioxaphosphinin-4-one with chloral and hexafluoroacetone

Vladimir F. Mironov,^{*a,b} Gulnara A. Ivkova,^b Liliya M. Abdrakhmanova,^a Ekaterina V. Mironova,^a Dmitry B. Krivolapov^a and Irina V. Konovalova^b

^a A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Centre of the Russian Academy

of Sciences, 420088 Kazan, Russian Federation. Fax: +7 843 273 1872; e-mail: mironov@iopc.knc.ru

^b A. M. Butlerov Chemical Institute, Kazan (Volga Region) Federal University, 420008 Kazan,

Russian Federation. E-mail: ivkova@ksu.ru

DOI: 10.1016/j.mencom.2011.09.018

Reaction of 2-(5-methyl-2-phenyl-2H-1,2,3-diazaphosphol-4-yl)-4H-1,3,2-benzodioxaphosphinin-4-one with chloral occurs at P^{III} atom of the 1,3,2-dioxaphosphinine cycle giving mostly 2-chlorocarbonylphenyl 2,2-dichlorovinyl (5-methyl-2-phenyl-2H-1,2,3-diazaphosphol-4-yl)phosphonate, whereas hexafluoroacetone incorporates into the 1,3,2-dioxaphosphorine cycle affording the corresponding 1,3,2-benzodioxaphosphepine.

Coupled bis-heterocycles are of considerable interest both theoretically and in practice.^{1–7} Representatives containing phosphorus atoms in various coordination states, such as biphospholes or biphosphinines,^{8–12} are less studied than their nitrogen analogues. Bis-heterocycles based on systems with P^{II} and P^{III} atoms can serve as ligands with coordination sites of different degrees of hardness¹³ and as possible substrates for cascade reactions.

On treatment with highly electrophilic chloral or hexafluoroacetone, 1,2,3-diazaphospholes having P^{II} atom react at C(4b) atom of the heterocyclic system,^{14,15} whereas 2-R-4*H*-1,3,2-benzodioxaphosphinin-4-ones being P^{III} derivatives afford seven-membered benzo-1,4,2- or benzo-1,3,2-dioxaphosphepines.^{16,17}

Herein, we studied reaction of 2-(5-methyl-2-phenyl-2*H*-1,2,3-diazaphosphol-4-yl)-4*H*-1,3,2-benzodioxaphosphinin-

2-(5-Methyl-2-phenyl-2H-1,2,3-diazaphosphol-4-yl)-4H-1,3,2-benzodioxaphosphinin-4-one 1. At first, 4-dichlorophosphino-5-methyl-2-phenyl-2H-1,2,3-diazaphosphole was synthesized analogously to 4-dichlorophosphino-2,5-dimethyl-2H-1,2,3-diazaphosphole,18,19 bp 125-127 °C/0.02 Torr, yield 60%. ³¹P NMR, δ : 241.8 (br.d, P^{II}, ²J_{P^{II}CP^{II}} 78.0 Hz), 157.0 (d, P^{III}, ²J_{P^{II}CP^{III}</sup> 78.0 Hz). Then, a mixture of thus obtained 4-dichlorophosphino-} 5-methyl-2-phenyl-2H-1,2,3-diazaphosphole (2.77 g, 0.010 mol) and trimethylsilyl 2-trimethylsiloxybenzoate (2.82 g, 0.013 mol) was kept under argon for 6 days. The reaction mixture was then evaporated (1.5 Torr) to afford a light-yellow powder of compound 1, mp 97-98 °C, yield 73%. MS, m/z: 342 [M]⁺. IR (ν /cm⁻¹): 1206, 1153, 1129, 1070, 1043, 1014, 960, 930, 904, 880, 869, 787, 767, 754, 748, 686, 656, 632, 586, 543, 527, 496, 473. ¹H NMR, δ : 8.05 (dd, 1H, H⁵, ³J_{HCCH} 8.0 Hz, ⁴J_{HCCCH} 1.9 Hz), 7.66 (dd, 1H, H^{7b}, ${}^{3}J_{\text{HCCH}}$ 8.5 Hz, ${}^{4}J_{\text{PNCCH}}$ 1.6 Hz), 7.59 (ddd, 1H, H⁷, ³J_{HCCH} 7.6 Hz, ³J_{HCCH} 8.3 Hz, ⁴J_{HCCCH} 1.6 Hz), 7.38 (dd, 1H, H^{8b}, ³J_{HCCH} 8.6 Hz, ${}^{3}J_{\text{HCCH}}$ 6.7 Hz), 7.30 (dd, 1H, H⁶, ${}^{3}J_{\text{HCCH}}$ 7.6 Hz, ${}^{3}J_{\text{HCCH}}$ 6.6 Hz), 8.6 HZ, ${}^{J}_{HCCH}$ 0.7 HZ, 7.30 (dd, 111, 11, ${}^{J}_{HCCH}$ 7.6 HZ, ${}^{J}_{HCCH}$ 0.6 HZ, ${}^{J}_{HCCH}$ 0.7 HZ, ${}^{J}_{HCC}$ 0.7 HZ, ${}^{$

4-one $1,^{\dagger}$ containing two different phosphorus atoms in each heterocyclic moiety, with chloral and hexafluoroacetone. In fact, the reaction occurred exclusively at P^{III} atom of 1,3,2-dioxaphosphorine cycle (Schemes 1 and 2). The fact that the reaction

[†] NMR spectra were recorded on Bruker MSL-400 (³¹P, 162.0 MHz) and Bruker Avance-400 (¹H, 400 MHz; ¹³C, 100.6 MHz) instruments in CDCl₃ with the use of HMDS (¹H) or the signals of the solvent (¹³C) as the internal standard and H₃PO₄ (³¹P) as the external standard. The IR spectra were measured on a Bruker Vector-22 instrument in KBr pellets. The EI mass spectra were obtained on a DFS Thermo Electron Corporation instrument (USA); the ionizing electron energy was 70 eV; the ion source temperature was 290 °C. A direct inlet system was used. The evaporator tube temperature was programmed from 100 to 350 °C. The processing of mass spectral data was performed using the Xcalibur software.

^{148.48 [}ddq (dd), C^{4b}, ¹J_{PC} 63.5 Hz, ¹J_{PC} 56.1 Hz, ³J_{HCCC} 2.5 Hz], 136.87 [ddd (s), C⁸, ¹J_{HC} 161.8 Hz, ³J_{HCCC} 9.1 Hz, ²J_{HCC} 1.9 Hz], 131.53 [ddd (br.s), C⁶, ¹J_{HC} 166.4 Hz, ³J_{HCCC} 8.4 Hz, ²J_{HCC} 2.1 Hz], 129.55 [dd (s), C^{8b}, ¹J_{HC} 161.0 Hz, ³J_{HCCC} 8.0 Hz]. 127.78 [dt (s), C^{9b}, ¹J_{HC} 162.5 Hz, ³J_{HCCC} 7.3 Hz], 124.58 [dd (s), C⁵, ¹J_{HC} 164.7 Hz, ³J_{HCCC} 7.7 Hz], 120.55 [ddd (d), C^{7b}, ¹J_{HC} 161.8 Hz, ³J_{PNCC} 9.5 Hz, ³J_{HCCC} 7.3 Hz], 120.27 [ddd (s), C⁷, ¹J_{HC} 159.0 Hz, ³J_{HCCC} 7.7 Hz, ²J_{HCC} 1.4 Hz], 116.10 [dd (m), C^{4a}, ³J_{POCC} 11.7 Hz, ⁵J_{PCPOCC} 3.3 Hz], 15.41 [qd (d), C^{10b}, ¹J_{HC} 128.8 Hz, ³J_{PCCC} 8.4 Hz]. ³P NMR, δ : 238.5 (br.d, P^{II}, ²J_{P^{II}CP^{II}} 16.6 Hz), 156.3 (d, P^{III}, ²J_{P^{II}CP^{III}} 16.6 Hz).