

Available online at www.sciencedirect.com

SCIENCE ODIRECT®

Mendeleev Commun., 2007, 17, 222-223

Mendeleev Communications

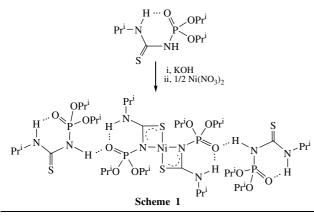
Unusual structure of an *N*-phosphoryl-*N*'-isopropylthiourea chelate with the nickel(II) cation

Felix D. Sokolov,*^a Sergey V. Baranov,^a Nail G. Zabirov,^a Dmitry B. Krivolapov,^b Igor A. Litvinov,^b Boulat I. Khairutdinov^a and Rafael A. Cherkasov^a

^a A. M. Butlerov Institute of Chemistry, Kazan State University, 420008 Kazan, Russian Federation.

Fax: +7 843 254 3734; e-mail: felix.sokolov@ksu.ru

^bA. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Centre of the Russian Academy of


Sciences, 420088 Kazan, Russian Federation

DOI: 10.1016/j.mencom.2007.06.013

The reaction of the potassium salt of N-phosphorylated thiourea $Pr^iN'HC(S)NHP(O)(OPr^i)_2$ (HL) with the Ni^{II} cation leads to the complex $[NiL_2(HL)_2]$; according to X-ray analysis, two neutral HL molecules are coordinated in the second sphere of the planar 1,3-N,S-chelate $[NiL_2]$ *via* (HL) PNH···O=P (NiL_2) hydrogen bonds.

The competitive coordination¹ of polyfunctional ligands with metal cations is of interest in modern coordination chemistry. Recently, we found that *N*-phosphorylthioureas RNHC(S)-NHP(O)(OPrⁱ)₂ (R = Ph, cyclohexyl) can form 1,3-N,S-chelates with Ni^{II}, Pd^{II} and Cu^{II} cations.² The 1,5-O,S-coordination of such a type of ligands³ is not favourable in these cases due to higher crystal field stabilization energies for the square-planar d^8 and d^9 complexes [M{RNHC(S)NP(O)(OPrⁱ)₂-N,S}₂] caused by stronger ligand field of the amide N atom in comparison with the P=O oxygen atom. The second stabilising factor for 1,3-N,S-chelates is the formation of intramolecular NH···O=P hydrogen bonds.

The synthesis of a Ni^{II} complex with thiourea PrⁱNHC(S)-NHP(O)(OPrⁱ)₂ (HL) has led to an interesting result: light violet crystals corresponding to the stoichiometry of $[NiL_2(HL)_2]$ **1** were isolated from the reaction mixture.[†] The crystals are readily soluble in benzene and chlorinated alkanes and insoluble in water and *n*-hexane. The stoichiometry of complex **1** is preserved after multiple crystallizations from benzene and dichloromethane.

[†] Thiourea HL was prepared according to the previously described method.⁵ *Synthesis of [NiL₂(HL)₂]:* a suspension of HL (1.410 g, 5 mmol) in aqueous ethanol (20 ml) was mixed with an ethanol solution of potassium hydroxide (0.28 g, 5 mmol). An aqueous (20 ml) solution of Ni(NO₃)₂·6H₂O (0.815 g, 2.8 mmol) was added dropwise with vigorous stirring to the resulting potassium salt. The mixture was stirred at room temperature for 5 h and left overnight. The resulting complex was extracted with CH₂Cl₂, washed with water and dried with anhydrous MgSO₄. The solvent was removed *in vacuo*. The precipitate was isolated from CH₂Cl₂ by *n*-hexane.

Spectral analyses[‡] and X-ray data[§] undoubtedly indicate the 1,3-N,S-type of coordination by two anionic ligand molecules in this case (Scheme 1). Only the examples of 1,5-O,S-coordination of the thiourea HL in [ML₂] chelates with cobalt(II)⁴ and zinc(II)⁵ cations have been reported earlier.

One could presume that complex **1** should contain a sixcoordinated Ni^{II} cation. Indeed, such a type of the squarebipyramidal complexes $[M(QH)_2Q_2]$ of thioamide PhC(S)-NHP(O)(OPrⁱ)₂ (HQ) with Ni^{II} and Co^{II} cations was isolated and investigated by X-ray analysis.⁶ The $[Q^-]$ ligands in these complexes exhibit a 1,5-O,S-coordination with the central ion in the equatorial positions of the bipyramide, while neutral ligands [HQ] are coordinated *via* oxygen atoms of the phosphoryl group in axial positions.

However, the unusual 1,3-N,S-coordination of the thiourea ligand [L⁻] leads to interesting changes in complex structure. X-ray analysis has clearly shown that neutral ligands in adduct 1 do not interact directly with the metal ion and being in the second sphere interact *via* hydrogen bonds between the P(O)NH protons of free ligands and the P=O oxygen atoms of coordinated ligand (Figure 1). The strong ligand field of 1,3-N,S-coordinated thiourea moieties, stabilising the square-planar lowspin complex species, does not allow the axial coordination of the HL molecules.

[‡] The IR spectra (Nujol) were recorded with a Specord M-80 spectrometer in the range 400–3600 cm⁻¹. The NMR spectra were obtained on a Varian Unity-300 NMR spectrometer at 25 °C. The ¹H and ³¹P{¹H} NMR spectra were recorded at 299.948 and 121.420 MHz, respectively. Chemical shifts are reported with reference to SiMe₄ (¹H) and H₃PO₄ (³¹P{¹H}). The mass spectra were measured on a TRACE MS Finnigan MAT instrument. The electron ionisation energy was 70 eV. The substance was injected directly into the ion source at 150 °C. Heating was carried out in a programmed mode from 35–200 °C at a rate of 35 K min⁻¹. Elemental analyses were performed on a Perkin-Elmer 2400 CHN micro-analyser.

For [NiL₂(HL)₂]: yield 0.784 g (53%), mp 82 °C. ¹H NMR (CDCl₃) δ : 1.16 (d, 12H, Me [PrⁱN, L], ³J_{HH} 6.5 Hz), 1.33–1.47 (m, 48H, Me [PrⁱO + PrⁱN]), 1.58 (d, 12H, Me [PrⁱO, L], ³J_{HH} 6.2 Hz), 3.91 (d sept., 2H, [NCH, L], ³J_{CHCH} 6.5 Hz, ³J_{CHNH} 8.2 Hz), 4.53–4.72 (overlapped m, 10H, [NCH + OCH]), 6.86 (br. s, 2H, [NHP, HL]), 8.33 (d, 2H, [NHPrⁱ, L], ³J_{CHNH} 8.2 Hz), 10.36 (br. s, [NHPrⁱ, HL]). ³¹P{¹H} NMR (CDCl₃) δ : –3.8 (HL), 2.9 (L). IR (ν /cm⁻¹): 1016 (POC), 1200 (P=O), 1560 (SCN), 3176, 3232 (NH). EI-MS, m/z (%): 621 (5) [M - 2HL]⁺. Found (%): C, 40.59; H, 7.60; N, 9.42. Calc. for C₄₀H₉₀N₈O₁₂P₄S₄Ni (1184.39) (%): C, 40.51; H, 7.65; N, 9.45.