Applied Magnetic Resonance 2008 vol.33 N4, pages 351-364

Superhyperfine structure of EPR spectra in LiLuF 4:U 3+ and LiYF 4:Yb 3+ single crystals

Aminov L., Ershova A., Zverev D., Korableva S., Kurkin I., Malkin B. Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

Electron paramagnetic resonance (EPR) spectra of doped paramagnetic crystals LiLuF 4:U 3+ and LiYF 4:Yb 3+ have been investigated at a frequency of about 9.42 GHz in the temperature range of 10-20 K. The U 3+ ion spectrum is characterized by g-factors g \parallel = 1.228 and g \perp = 2.516, and contains the hyperfine structure due to the 235U isotope with nuclear spin I = 7/2 and natural abundance of 0.71%. The observed hyperfine interaction constants are A \parallel = 81 G and A \perp = 83.8 G. Moreover, the spectrum reveals the well-resolved superhyperfine structure (SHFS) due to two groups of four fluorine ions forming the nearest surrounding of the U 3+ ion. This SHFS contains up to nine components with the spacing between components being about 12.7 G. The SHFS is observed also in the EPR spectrum of the LiYF 4:Yb 3+ crystal; up to 17 components with spacing of about 3.7 G may be traced. Some parameters of the effective Hamiltonian of the SHF interaction are estimated, the contribution of covalent bonding of felectrons with ligands into these parameters is discussed. © 2008 Springer-Verlag.

http://dx.doi.org/10.1007/s00723-008-0071-2