Journal of Inclusion Phenomena and Macrocyclic Chemistry 2008 vol.60 N3-4, pages 281-291

IR and NMR spectra, intramolecular hydrogen bonding and conformations of mercaptothiacalix[4]arene molecules and their para-tert-butyl-derivative

Katsyuba S., Zvereva E., Chernova A., Shagidullin A., Solovieva S., Antipin I., Konovalov A. Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

It is demonstrated that the introduction of p-tert-butyl groups dramatically influences the conformational behaviour of the mercaptothiacalix[4] arene molecules. Quantum-chemical computations in combination with IR and NMR spectroscopy prove that, in contrast to closely related calixarenes, the 1,3-alternate becomes a dominant conformer of p-tert-but-I-mercaptothiacalix[4] arene not only in crystal, but also in solutions and in vacuum. It is shown that the title molecules form essentially non-cooperative intramolecular hydrogen bonds: their SH groups are intramolecularly H-bonded solely to the sulfide groups bridging thiophenolic units. The enthalpy of this bonding, evaluated from logansen's rule, amounts to ca. 1.5 kcal mol-1 per one SH•••S bond, which about four times smaller than the enthalpies of cooperative intramolecular H-bonds formed by related calixarenes and thiacalixarenes. © 2007 Springer Science+Business Media B.V.

http://dx.doi.org/10.1007/s10847-007-9376-2

Keywords

Conformations, DFT, Intramolecular hydrogen bonds, IR and NMR spectra, Mercaptothiacalix[4]arenes, P-tert-Butyl-substitution