
A generalized Milne–Thomson theorem for the case of parabolic inclusion

Yu.V. Obnosov *

Department of Mechanics and Mathematics, Kazan State University, University Street, 17, 420008 Kazan, Tatarstan, Russia

a r t i c l e i n f o

Article history:
Received 27 June 2007
Received in revised form 4 April 2008
Accepted 1 May 2008
Available online 10 May 2008

Keywords:
Heterogeneous media
Circular theorem
Analytic functions

a b s t r a c t

Complex analysis methods are applied to determine a velocity field of seepage in a heter-
ogeneous infinite planar medium consisting of two dissimilar homogeneous components
with a parabolic interface. New cases with arbitrary singularities of the principal part of
a required complex potential are considered.
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1. Introduction

We consider the problem of determination of a seepage field in a planar porous medium with a parabolic division bound-
ary between two homogeneous components having the hydraulic conductivity k1 and k2. The interface separates the inclu-
sion S2 from the ambient medium S1 as is shown in Fig. 1. We assume a steady-state, fully-saturated, Darcian flow in a layer
(e.g., a confined aquifer) of a constant thickness. Then the Darcian velocity vpðx; yÞ ¼ ðvpx; vpyÞ, ðx; yÞ 2 Sp, is potential and sole-
noidal in each isotropic component Sp, p ¼ 1;2 [1]:

divvpðx; yÞ ¼ 0; rotvpðx; yÞ ¼ 0: ð1:1Þ

Along the parabolic interface L ¼ �S1 \ �S2 the limit values of the vectors vp and vp=kp satisfy the following refraction
conditions:

½v1ðx; yÞ�n ¼ ½v2ðx; yÞ�n; k2½v1ðx; yÞ�s ¼ k1½v2ðx; yÞ�s; ðx; yÞ 2L: ð1:2Þ

Here the subscripts n and s denote the normal and tangential components of the vectors. Problem (1.1), (1.2) can be equiv-
alently formulated in terms of the complex potential wpðx; yÞ ¼ ðupðx; yÞ;wpðx; yÞÞ, where upðx; yÞ is the velocity potential and
wpðx; yÞ is the stream function within the component Sp, and oup=ox ¼ vpx, oup=oy ¼ vpy.

It is well–known that an explicit analytical solution of the above stated problem can be obtained for few heterogeneities
only. If we exclude the trivial case of perfectly aligned strata [1], then the simplest two-component composite consists of a
circular inclusion. Solution of the corresponding boundary value problem constitutes the famous Milne–Thomson circle the-
orem [2]. In [2]. In [3,24] the Milne–Thomson circle theorem was generalized for the case when a required complex potential
had a finite number of singularities arbitrary situated on the plane. These singularities physically represent pumping and/or
injection wells (sinks/sources, [4,5]), river-locks or dams (vortexes, [6]) and immersed obstacles (dipoles, [7]).
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