A generalized Milne-Thomson theorem for the case of parabolic inclusion

Yu.V. Obnosov*
Department of Mechanics and Mathematics, Kazan State University, University Street, 17, 420008 Kazan, Tatarstan, Russia

A R T I C L E I N F O

Article history:

Received 27 June 2007
Received in revised form 4 April 2008
Accepted 1 May 2008
Available online 10 May 2008

Keywords:

Heterogeneous media
Circular theorem
Analytic functions

Abstract

Complex analysis methods are applied to determine a velocity field of seepage in a heterogeneous infinite planar medium consisting of two dissimilar homogeneous components with a parabolic interface. New cases with arbitrary singularities of the principal part of a required complex potential are considered. © 2008 Elsevier Inc. All rights reserved.

1. Introduction

We consider the problem of determination of a seepage field in a planar porous medium with a parabolic division boundary between two homogeneous components having the hydraulic conductivity k_{1} and k_{2}. The interface separates the inclusion S_{2} from the ambient medium S_{1} as is shown in Fig. 1. We assume a steady-state, fully-saturated, Darcian flow in a layer (e.g., a confined aquifer) of a constant thickness. Then the Darcian velocity $\mathbf{v}_{p}(x, y)=\left(v_{p x}, v_{p y}\right),(x, y) \in S_{p}$, is potential and solenoidal in each isotropic component $S_{p}, p=1,2$ [1]:

$$
\begin{equation*}
\operatorname{div} \mathbf{v}_{p}(x, y)=0, \quad \operatorname{rot} \mathbf{v}_{p}(x, y)=0 . \tag{1.1}
\end{equation*}
$$

Along the parabolic interface $\mathscr{L}=\bar{S}_{1} \cap \bar{S}_{2}$ the limit values of the vectors \mathbf{v}_{p} and \mathbf{v}_{p} / k_{p} satisfy the following refraction conditions:

$$
\begin{equation*}
\left[\mathbf{v}_{1}(x, y)\right]_{n}=\left[\mathbf{v}_{2}(x, y)\right]_{n}, \quad k_{2}\left[\mathbf{v}_{1}(x, y)\right]_{\tau}=k_{1}\left[\mathbf{v}_{2}(x, y)\right]_{\tau}, \quad(x, y) \in \mathscr{L} . \tag{1.2}
\end{equation*}
$$

Here the subscripts n and τ denote the normal and tangential components of the vectors. Problem (1.1), (1.2) can be equivalently formulated in terms of the complex potential $\mathbf{w}_{p}(x, y)=\left(\varphi_{p}(x, y), \psi_{p}(x, y)\right)$, where $\varphi_{p}(x, y)$ is the velocity potential and $\psi_{p}(x, y)$ is the stream function within the component S_{p}, and $\partial \varphi_{p} / \partial x=v_{p x}, \partial \varphi_{p} / \partial y=v_{p y}$.

It is well-known that an explicit analytical solution of the above stated problem can be obtained for few heterogeneities only. If we exclude the trivial case of perfectly aligned strata [1], then the simplest two-component composite consists of a circular inclusion. Solution of the corresponding boundary value problem constitutes the famous Milne-Thomson circle theorem [2]. In [2]. In [3,24] the Milne-Thomson circle theorem was generalized for the case when a required complex potential had a finite number of singularities arbitrary situated on the plane. These singularities physically represent pumping and/or injection wells (sinks/sources, [4,5]), river-locks or dams (vortexes, [6]) and immersed obstacles (dipoles, [7]).

[^0]S0307-904X/\$ - see front matter © 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.apm.2008.05.004

[^0]: * Tel.: +7 8432315 278; fax: +7 8432382209 .

 E-mail address: Yurii.Obnosov@ksu.ru

