

Available online at www.sciencedirect.com

Journal of Magnetism and Magnetic Materials 300 (2006) 83-88

www.elsevier.com/locate/jmmm

Decoupled superconductivity in the four- and five-layered ferromagnet–superconductor nanostructures and control devices

Yurii N. Proshin^{a,b,*}, Alexei P. Zimin^a, Nail G. Fazleev^{a,c}, Mansur G. Khusainov^{a,b,d}

^aKazan State University, Kazan 420008, Russia

^bMax-Planck-Institute for the Physics of Complex Systems, Dresden 01871, Germany ^cUniversity of Texas at Arlington, Arlington, Texas 76019, USA ^dKazan State Tupolev Technical University, Chistopol' 422981, Russia

Available online 16 November 2005

Abstract

PACS: 74.78.Fk; 85.25.-j; 74.62.-c; 85.75.-d

Keywords: Proximity effect; Superconductivity; Ferromagnetism; Multilayers; Critical temperature; Control device

1. Introduction

For the ferromagnet/superconductor (F/S) heterostructures consisting of alternating ferromagnetic metal (F) and superconducting (S) layers, the superconducting order parameter (OP), owing to the proximity effect, can be induced in the F layer; on the other hand, the neighbouring pair of the F layers can interact with one another via the S layer. One can control properties of such systems varying the thicknesses of the F and S layers (d_f and d_s) or changing external magnetic field **H**. Numerous experiments on the F/ S *structures* revealed nontrivial dependences of superconducting transition temperature T_c on the thickness d_f (see reviews [1,2] and references therein).

E-mail address: yurii.proshin@ksu.ru (Y.N. Proshin).

0304-8853/ $\$ - see front matter \odot 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.jmmm.2005.10.038

The first solution [3,4] of the boundary value problem (BVP) for pair amplitude in the dirty F/S superlattices led to the possibility of the nonmonotonic dependence $T_c(d_f)$ which was related to periodically switching the ground superconducting state between the 0 and π phases. Later the boundary conditions valid for arbitrary transparency of the F/S interface were deduced from the microscopic theory [1]. An additional mechanism of nonmonotonic dependence $T_c(d_f)$ [1,5–8] has been revealed due to modulation of the pair amplitude flux from the S layer to the F layer by thickness d_f . The reentrant superconductivity predicted by us [1] has been recently observed in the Fe/V/ Fe trilayer [9].

The superconductivity in the F/S systems [1,10] is a combination of the BCS pairing in the S layers and the Larkin–Ovchinnikov–Fulde–Ferrell (LOFF) [11] pairing with a nonzero three-dimensional (3D) momentum of pairs in the F layers. Nevertheless, usually it is assumed [3–8,12]

^{*}Corresponding author. Kazan State University, Kazan 420008, Russia. Tel.: +78432315193; fax: +78432380994.