POLYHEDRON

Polyhedron 28 (2009) 501-504



Contents lists available at ScienceDirect

# Polyhedron

journal homepage: www.elsevier.com/locate/poly

# The influence of the substituent [PhNHNH– and $EtN(NH_2)$ –] on the *N*-thiophosphorylated thiosemicarbazides RC(S)NHP(S)(OiPr)<sub>2</sub> crystal design

Damir A. Safin<sup>a,\*</sup>, Michael Bolte<sup>b</sup>, Elmira R. Shakirova<sup>a</sup>, Maria G. Babashkina<sup>a</sup>

<sup>a</sup> A.M. Butlerov Chemistry Institute, Kazan State University, Kremlevskaya Street 18, 420008 Kazan, Russian Federation <sup>b</sup> Institut für Anorganische Chemie J.-W.-Goethe-Universität, Frankfurt/Main, Germany

### ARTICLE INFO

Article history: Received 22 October 2008 Accepted 28 November 2008 Available online 13 January 2009

Keywords: Phenylhydrazine Ethylhydrazine Thiosemicarbazide Crystal structures

## ABSTRACT

Two *N*-thiophosphorylated thiosemicarbazides of the common formula  $RC(S)NHP(S)(OiPr)_2$ [R = PhNHNH- (**1**); EtN(NH<sub>2</sub>)- (**2**)] have been synthesized and characterized by IR, <sup>1</sup>H and <sup>31</sup>P spectroscopy, and the single crystal X-ray diffraction method. Single crystal X-ray diffraction studies showed the thiosemicarbazides form both intra- and intermolecular hydrogen bonds, which in turn lead to polymeric chain formation. Moreover, according to the X-ray data of the phenylsubstituted thiosemicarbazide, the formation of intermolecular H····η<sup>6</sup>-phenyl interactions were established.

© 2008 Elsevier Ltd. All rights reserved.

#### 1. Introduction

*N*-(Thio)phosphorylated (thio)amides  $RC(X)NHP(Y)R'_2$  and (thio)ureas  $RR'NC(X)NHP(Y)R''_2$  (X = O, S) have been intensively studied [1,2]. The interest is caused not only from the fact that these compounds show a wide variety of complexes with various metal cations but also from the potential of these amidophosphates as agents for extraction and transporting different cations, anions and organic molecules [3], and as ligands in metal complexes used as single source precursors for thin films, nanocrystals and semiconductors [4].

On the other hand, thiosemicarbazides and their derivatives are very attractive compounds among NS donor compounds because of the large number useful biological properties, particularly their antitumor activity [5,6]. Since 4,4',4"-phosphinylidynetrisemicarbazide showed the confirmed activity in Walker carcinosarcoma [7] the preparation of additional hydrazine compounds as potential antitumor agents, particularly (thio)phosphorylated derivatives, was encouraged [8–10]. Both compounds reported, herein, are structurally related to agents possessing antimicrobial and anticancer activities [8,10].

Herein, we report two *N*-thiophosphorylated thiosemicarbazides PhNHNHC(S)NHP(S)(OiPr)<sub>2</sub> (1) and EtN(NH<sub>2</sub>)C(S)NHP(-S)(OiPr)<sub>2</sub> (2). Compound 1 was described by us earlier [11] and in this work we present the X-ray structure investigation of it in comparison with 2.

## 2. Experimental

#### 2.1. Synthesis

Thiosemicarbazide **1** was synthesized according to the previously described method [9]. Compound **2** was synthesized similarly to **1**: a solution of ethylhydrazine (5 mmol, 0.30 g) in anhydrous  $CH_2Cl_2$  (15 mL) was treated under vigorous stirring with a solution of (*i*PrO)<sub>2</sub>P(S)NCS (5.5 mmol, 1.31 g) in the same solvent. The mixture was stirred for 2 h. The solvent was removed in a vacuum, and the product was purified by recrystallization from a 1:5 (v/v) mixture of methylene chloride and *n*-hexane.

Compound 1: <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  = 1.35–1.40 (m, 12H, CH<sub>3</sub>), 4.92 (d. sept, <sup>3</sup>*J*<sub>POCH</sub> = 10.6 Hz, <sup>3</sup>*J*<sub>H,H</sub> = 6.2 Hz, 2H, OCH), 6.34 (s, 1H, PhNH), 6.84–6.92 (m, 2H, o-H, Ph), 6.96–7.05 (m, 1H, *p*-H, Ph), 7.24–7.32 (m, overlapped with the solvent signal, *m*-H, Ph), 8.00 (s, 1H, C(S)NHN), 8.23 (d, 1H, <sup>2</sup>*J*<sub>PNH</sub> = 13.9 Hz, P(S)NH), 9.44 (d, <sup>4</sup>*J*<sub>PNH</sub> = 5.6 Hz, C(S)NHN, minor form) ppm. <sup>31</sup>P NMR (CDCl<sub>3</sub>):  $\delta$  = 53.5 (br t, <sup>3</sup>*J*<sub>POCH</sub> = 9.8 Hz, 1P), 58.5 (q, <sup>2</sup>*J*<sub>PNH</sub> = <sup>3</sup>*J*<sub>POCH</sub> = 12.2 Hz, 1.9P) ppm. IR: v = 624 (P=S), 1000, 1010 (POC), 1528 (S=C-N), 3224, 3288 (NH) cm<sup>-1</sup>.

Compound **2**: Yield: 1.27 g (85%). M.p. 97 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta = 1.25$  (t, <sup>3</sup> $J_{H,H} = 7.2$  Hz, 3H, CH<sub>3</sub>, Et), 1.37 (d, <sup>3</sup> $J_{H,H} = 6.2$  Hz, 12H, CH<sub>3</sub>, *Oi*Pr), 3.91 (br s, 2H, NH<sub>2</sub>), 4.16 (q, <sup>3</sup> $J_{H,H} = 7.1$  Hz, 2H, CH<sub>2</sub>, Et), 4.94 (d. sept, <sup>3</sup> $J_{POCH} = {}^{3}J_{H,H} = 6.2$  Hz, 2H, OCH), 8.98 (br s, 1H, P(S)NH) ppm. <sup>31</sup>P{<sup>1</sup>H} NMR (CDCl<sub>3</sub>):  $\delta = 54.1$  (1P), 59.3 (3.5P) ppm. IR:  $\nu = 653$  (P=S), 981, 998, 1020 (POC), 1488 (S=C-N), 1627, 3106, 3173, 3208, 3247, 3323 (NH + NH<sub>2</sub>) cm<sup>-1</sup>. Anal. Calc. for C<sub>9</sub>H<sub>22</sub>N<sub>3</sub>O<sub>2</sub>PS<sub>2</sub> (299.39): C, 36.11; H, 7.41; N, 14.04. Found: C, 36.18; H, 7.34; N, 14.10%.

<sup>\*</sup> Corresponding author. Tel.: +784 32315397; fax: +784 32543734. *E-mail address:* damir.safin@ksu.ru (D.A. Safin).

<sup>0277-5387/\$ -</sup> see front matter  $\odot$  2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.poly.2008.11.060