

Available online at www.sciencedirect.com

Polyhedron 26 (2007) 1550-1560

A "sodium trap" based on benzo-15-crown-5 with an exocyclic N-(thiophosphoryl)thiourea moiety

Felix D. Sokolov ^a, Damir A. Safin ^{a,*}, Maria G. Babashkina ^a, Nail G. Zabirov ^a, Vasiliy V. Brusko ^a, Nikolay A. Mironov ^a, Dmitry B. Krivolapov ^b, Igor A. Litvinov ^b, Rafael A. Cherkasov ^a, Boris N. Solomonov ^a

^a Department of Chemistry, Kazan State University, Kremlevskaya Street 18, 420008 Kazan, Russia Arbusov Institute of Organic and Physical Chemistry, Arbuzov Street 8, 420088 Kazan, Russia ?

> Received 12 October 2006; accepted 7 December 2006 Available online 22 December 2006

Abstract

For N-(thio)phosphorylthioureas of the common formula $RC(S)NHP(X)(OiPr)_2$ HL^I (R = N-(4'-aminobenzo-15-crown-5), X = S), $\mathbf{BaL^V}$ have been synthesized and investigated. Compounds $\mathbf{NaL^{I,II}}$ quantitatively drop out as a deposit in ethanol medium, allowing the separation of Na⁺ and K⁺ cations. This effect is not displayed for the other compounds. The crystal structures of HL^{III} and the solvate of the composition [K(Me₂CO)L^{III}] have been investigated by X-ray crystallography. © 2006 Elsevier Ltd. All rights reserved.

Keywords: Chelates; Coordination modes; Crown-ethers; Crystal structures; N-thioacylamido(thio)phosphates

1. Introduction

Crown-ethers and azamacrocycles modified by exocyclic groups are widely applied as complexing agents, selective to cations of alkaline, earth-alkaline, and d-metals [1,2], lanthanides and actinides [3], and Tl(I) [4]. However, in the literature there is no data about direct (not-extraction) highly effective separation of alkaline metal cations using crown compounds.

On the formation of complexes of alkaline metal salts [M⁺A⁻] with crown-ethers, as a rule, there is an increase in solubility of the formed adduct $[M(crown)]^+A^-$ in an organic phase [5]. However, a combination of crown-ether and negative charged chelating units in a ligand molecule can lead to interesting cooperative effects.

Herein we present data about the structures and properties of N-(thio)phosphorylthioureas of the common formula $RC(S)NHP(X)(OiPr)_2$, (HL^{I-IV}) and N,N'-bis-[C(S)NHP(S)] $(OiPr)_2$ ₂₋₁,10-diaza-18-crown-6 (H_2L^V) (Scheme 1), and their salts with Li⁺, Na⁺, K⁺, Ba²⁺.

It is known [6] that N-(thio)phosphorylthioureas in aqueous alcohol medium are weak acids: HLIII pK 8.1 (96% aq. EtOH) [7], 8.28 (96% aq. *i*PrOH) [8]; **HL**^{IV} pK 6.93 (96% aq. *i*PrOH) [8]; $\mathbf{H_2L^V}$ $pK_1 = 9.2$, $pK_2 = 10.2$ (96% aq. EtOH) [7]. These compounds are able to form salts with cations of alkaline metals. There is no information on the crystal structures of salts of N-(thio)phosphorylthioureas in the literature. However, the structures of some close analogues of these compounds – salts of N-(thio) phosphorylamides and thioamides, containing the fragment $C(X)NHP(Y)R'_{2}(X, Y = O, S)$, have already been investigated. Compounds of the formula [M(CCl₃C(O)NP(O) $(OMe)_2$ as crystals form dimers $(M = Na^+)$ or polymeric chains $M = Rb^+$ [9]. Potassium salts of thioamides

Corresponding author. Tel./fax: +7 843 2543734. E-mail addresses: felix.sokolov@ksu.ru (F.D. Sokolov), damir.safin@ ksu.ru (D.A. Safin).