

Available online at www.sciencedirect.com

Polyhedron 25 (2006) 3611-3616

Synthesis, structure and properties of novel *N*-thiophosphorylated derivatives of 1,3-dihydro-2*H*-benzimidazol-2-imine and imidazolidine-2-imine

Felix D. Sokolov ^a, Damir A. Safin ^{a,*}, Nail G. Zabirov ^a, Alexander Yu. Verat ^a, Vasiliy V. Brusko ^a, Dmitry B. Krivolapov ^b, Ekaterina V. Mironova ^b, Igor A. Litvinov ^b

Department of Chemistry, Kazan State University, Kremlevskaya Street 18, 420008 Kazan, Tatarstan, Russia
Arbusov Institute of Organic and Physical Chemistry, Arbuzov Street 8, 420088 Kazan, Tatarstan, Russia

Received 2 June 2006; accepted 11 July 2006 Available online 1 August 2006

Abstract

The reaction of bis-thiourea o-C₆H₄[NHC(S)NHP(S)(Oi-Pr)₂]₂ (1) with iodine, KOH and ClCH₂C(O)OCH₃ leads to O,O'-diisopropyl-1,3-dihydro-2H-benzimidazol-2-ylideneamidothiophosphate (2) formation. The complex of the potassium salt of compound 2 with 18-crown-6, having the composition [K(18-crown-6)L], has been synthesized. Bis-thiourea [CH₂NHC(S)NHP(S)(Oi-Pr)₂]₂ (6) forms a stable potassium salt, which oxidation by iodine leads to a product of heterocyclization, O,O'-diisopropyl-(1-{[(diisopropoxyphosphorothio)amino]carbonothioyl}imidazolidine-2-ylidene)amidothiophosphate (8), in which one of the thiourea fragments is kept. © 2006 Elsevier Ltd. All rights reserved.

Keywords: Heterocycles; Crown-ether; Crystal structures; Phosphorylated derivatives; Thioureas

1. Introduction

N-Thiophosphorylated thioureas are of interest as complexing agents [1,2] and precursors for synthesis of heterocycles, containing exocyclic phosphorylic groups. Thus, a number of reactions with their participation, leading to phosphor-containing iminothiazolidines, iminooxazolidines and thiophosphoryl(phosphonyl)aminothiozoles, have been reported [3–5]. With the presence of two thiourea fragments occupying α,β -positions in a molecule, it is reasonable to expect interesting transformations leading to cyclic structures.

Herein we report the structure and properties of cyclic guanidinates: imidazol-2-imine and imidazolidin-2-imine, synthesized by cyclization of bifunctional *N*-thiophosphorylated thioureas. Guanidine derivatives of this kind

E-mail addresses: felix.sokolov@ksu.ru (F.D. Sokolov), damir. safin@ksu.ru (D.A. Safin).

attract attention as antifilarial agents [6] and as ligands for metal binding [7,8]. Their alkali metal salts are important as intermediates for the synthesis of complexes with d- and f-elements. Organic analogues of the synthesized compounds show complexation properties towards Cr(III), Hg(II), V(IV), Co(III), Ni(II), Pd(II), Cu(II), Zn(II), Sn(II) and Sn(IV) cations [7b,9,10].

2. Experimental

2.1. Synthesis of O,O'-diisopropyl-1,3-dihydro-2H-benzimidazol-2-ylideneamidothiophosphate (2)

Path a: Yield: 80%. M.p. 218 °C [11].

Path b: A suspension of anhydrous K_2CO_3 (1.38 g, 10 mmol), 18-crown-6 (0.1 g, 0.38 mmol as a catalyst) and bis-thiourea 1 (1.47 g, 2.5 mmol) in benzene solution (50 mL) was stirred at room temperature for 2–3 days. Then the K_2CO_3 precipitate was filtered off and the solvent was removed in vacuo. The residue was recrystallized from

^{*} Corresponding author. Tel./fax: +7 843 2543734.