Gravitation and Cosmology 2009 vol.15 N3, pages 241-246

Wormholes supported by chiral fields

Bronnikov K., Chervon S., Sushkov S. Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

We consider static, spherically symmetric solutions of general relativity with a non-linear sigma model (NSM) as a source, i.e., a set of scalar fields $\Phi = (\Phi \ 1, ..., \Phi \ n)$ (so-called chiral fields) parametrizing a target space with a metric h ab(Φ). For NSM with zero potential V (Φ), it is shown that the space-time geometry is the same as with a single scalar field but depends on h ab. If the matrix h ab is positive-definite, we obtain the Fisher metric, originally found for a canonical scalar field with positive kinetic energy; otherwise we obtain metrics corresponding to a phantom scalar field, including singular and nonsingular horizons (of infinite area) and wormholes. In particular, the Schwarzschild metric can correspond to a nontrivial chiral field configuration, which in this case has zero stress-energy. Some explicit examples of chiral field configurations are considered. Some qualitative properties of NSM configurations with nonzero potentials are pointed out. © Pleiades Publishing, Ltd., 2009.

http://dx.doi.org/10.1134/S0202289309030074