Journal of Organometallic Chemistry 750 (2014) 59-64

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Synthesis, structure and electrochemical properties of the organonickel complex [NiBr(Mes)(phen)] (Mes = 2,4,6-trimethylphenyl, phen = 1,10-phenanthroline)

CrossMark

Dmitry G. Yakhvarov^{a,b,*}, Andreas Petr^{c,**}, Vladislav Kataev^c, Bernd Büchner^{c,e}, Santiago Gómez-Ruiz^d, Evamarie Hey-Hawkins^{d,**}, Svetlana V. Kvashennikova^a, Yulia S. Ganushevich^a, Vladimir I. Morozov^a, Oleg G. Sinyashin^a

^a A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Centre of the Russian Academy of Sciences, Kazan 420088, Russian Federation

^b A.M. Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, Kazan 420008, Russian Federation

^c Institute for Solid State and Materials Research, IFW-Dresden, Dresden D-01069, Germany

^d Institut für Anorganische Chemie, Universität Leipzig, Leipzig D-04103, Germany

^e Institut für Festkörperphysik, Technische Universität Dresden, Dresden D-01062, Germany

A R T I C L E I N F O

Article history: Received 12 July 2013 Received in revised form 31 October 2013 Accepted 5 November 2013

Keywords: Organonickel σ-complexes 1,10-Phenanthroline Electrochemistry In situ EPR spectroelectrochemistry Electroreduction Ligand dissociation

ABSTRACT

The organonickel complex [NiBr(Mes)(phen)] (1) (Mes = 2,4,6-trimethylphenyl, phen = 1,10-phenanthroline) was synthesized by oxidative addition of MesBr to nickel(0) complexes, obtained from [Ni(COD)₂] (COD = 1,5-cyclooctadiene) and phen, or electrochemically generated from [NiBr₂(-phen)], and by ligand exchange reaction from [NiBr(Mes)(PPh₃)₂]. The electrochemical properties of [NiBr(Mes)(phen)] were investigated by cyclic voltammetry and *in situ* EPR spectroelectrochemistry. The cathodic reduction of **1** resulted in formation of the neutral radical complex [Ni(Mes)(phen[•])] with a 1,10-phenanthroline radical anion bound to a nickel(II) centre. The electrochemical generation of the free 1,10-phenanthroline radical anion from 1,10-phenanthroline is also described.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Organonickel complexes with a sigma-C–Ni-bond (sigmacomplexes) are important intermediates in several catalytic processes involving nickel catalysts [1,2]. These species are very reactive and only a limited number has been isolated and characterized. The first organonickel sigma-complexes were reported in the early 1960s [3], and derivatives containing the bpy ligand were described about twenty years later [4,5]. Chatt and Shaw [3] had shown in the 1960s that *ortho*-substituents in a σ -bonded aryl substituent can stabilize the complex by preventing free rotation about the nickel-carbon σ bond. Since then, the synthesis and

** Corresponding author.

reactivity of σ -aryl nickel complexes bearing diimine ligands have been the focus of several reports [6–11].

The major route to organonickel sigma-complexes is the reaction of nickel halide complexes with organomagnesium or organolithium reagents followed by a ligand exchange reaction [1,2]. Alternatively, organonickel sigma-complexes can be obtained by oxidative addition of organic halides to nickel(0) complexes [1,2].

Recently, we have shown that diimine organonickel σ -aryl complexes [NiBr(aryl)(bpy)] (bpy = 2,2'-bipyridine) bearing *ortho*substituents in the σ -bonded aromatic ring can be efficiently synthesized using electrochemical techniques, either in a single electrochemical cell with a sacrificial nickel anode [12], or in an electrochemical cell supplied with a diaphragm for separation of the anodic and cathodic compartments [13]. The first approach, use of a sacrificial anode, proved to be the most efficient procedure. The mechanism of the overall process involves cathodic *in situ* electrochemical generation of the highly reactive nickel(0) complex [Ni⁰(bpy)] followed by oxidative addition of *ortho*-substituted aryl

^{*} Corresponding author. A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Centre of the Russian Academy of Sciences, Kazan 420088, Russian Federation.

E-mail addresses: yakhvar@iopc.ru (D.G. Yakhvarov), a.petr@ifw-dresden.de (A. Petr), hey@rz.uni-leipzig.de (E. Hey-Hawkins).

⁰⁰²²⁻³²⁸X/\$ - see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jorganchem.2013.11.003