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The proton spin dynamics in polymer melts is determined by intramolecular and intermolecular magnetic
dipole-dipole interactions among the proton spins. Duringmany decades it was postulated that themain contri-
bution is a result of intramolecularmagnetic dipole-dipole interactions of protons belonging to the samepolymer
segment. This postulate is far from reality. The relative weights of intra- and intermolecular contributions are
time (or frequency) dependent and sensitive to details of polymer chain dynamics. It is shown that for isotropic
models of polymer dynamics, in which already at short times the segmental displacements are not correlated
with the polymer chain’s initial conformation, the influence of the intermolecular dipole-dipole interactions
becomes stronger with increasing evolution time (i.e. decreasing frequency) than the corresponding influence
of the intramolecular counterpart. On the other hand, an inverted situation is predicted by the tube-reptation
model: here the influence of the intramolecular dipole-dipole interactions increases faster with time than the
contribution from intermolecular interactions. This opens a new perspective for experimental investigations of
polymer dynamics by proton NMR, and first results are reported.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Proton NMR is a powerfulmethod for experimental investigations of
structure and dynamics in different fields of condensedmatter in gener-
al, and polymer physics in particular [1–13]. This favorable situation is
determined at least by the two following facts. First, protons are ubiqui-
tous and are present in the majority of soft matter of interest. Second,
the dynamics of the proton spin, as of any another spin nucleus, in an
external magnetic field is simple and exactly solvable using rather ele-
mentary mathematics. In the absence of other interactions the nuclear
spin performs precession around the Z axis along which the magnetic
field is aligned with the Larmor frequency given by the simple relation:

ω ¼ −γHB0; ð1Þ

where B0 is the experimentally controlled external magnetic field, γH is
the gyromagnetic ratio of the proton. Interactions of protons with each
other as well as other degrees of freedom disturb the simple picture. A
quantitative description of these various influences is the main subject

of NMR theory in condensed matter. Additional interactions induce a
shift of the proton frequency and create relaxation processes. Shifts of
the resonance frequency, the most important of which is the chemical
shift generated by electronic shielding, are the main subject of NMR
spectroscopy [1–3] and form a basis for studying themicroscopic struc-
ture of polymers based on the experimentally observed NMR spectra.
The dynamics of the investigated systems is mainly reflected through
characteristic features of nuclear spin relaxations. Important findings
of recent years [7,11–30], affecting the understanding of the proton
spin dynamics in polymer melts are the subject of the discussion of
this paper.

One has to distinguish relaxation parallel and perpendicular to the
quantization (Z) axis, which is defined by the direction of the external
magnetic field. The longitudinal relaxation, i.e. the spin relaxation
along Z direction, is characterized by the spin-lattice relaxation time
T1(ω). The transverse relaxation, i.e., the spin relaxation in the XY
plane is given by the spin-spin relaxation time T2(ω). For polymer sys-
tems with large molecular masses, T1(ω) possesses a non-trivial fre-
quency dispersion covering an extremely broad frequency range
which nowadays can be measured most easily by field cycling tech-
niques (FC) in a range of 100 Hz – 40MHz when earth field compensa-
tion is included [24,25,30,32]. The relaxation time T2(ω) has weaker
frequency dependence and is usually investigated at fixed resonance
frequency. As a rule, T1(ω) ≥ T2(ω).
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