Conformational stability of diastereomeric 8,8-dichloro-3, 5-dioxa-4-thia-4-oxobicyclo[5.1.0]octanes: X-ray crystallography, dynamic ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy study

V.V. Gavrilov ${ }^{\text {a }}$, M.N. Shamsutdinov ${ }^{\text {a }}$, O.N. Kataeva ${ }^{\text {b }}$, V.V. Klochkov ${ }^{\text {a }}$, I.A. Litvinov ${ }^{\text {b }}$, Yu.G. Shtyrlin ${ }^{\text {a }}$, E.N. Klimovitskii ${ }^{\text {a,* }}$
${ }^{\text {a }}$ A.M. Butlerov Chemical Institute, Kazan State University, Kazan 420111, Box 115, Russian Federation
${ }^{\mathrm{b}}$ A.E. Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, Arbuzov Street 8, Kazan 420088, Russian Federation

Received 5 October 2007; received in revised form 27 November 2007; accepted 30 November 2007
Available online 8 December 2007

Abstract

X-ray data for both title molecules display a chair conformation with exo location of cyclopropane moiety and axial or equatorial sulfinyl group. Dynamic ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy at $-95^{\circ} \mathrm{C}$ exhibit conformational homogeneity for the first diastereomer and two component chair - twist-boat equilibrium (2:3) for the latter. © 2007 Elsevier B.V. All rights reserved.

Keywords: Heterobicyclo[5.1.0]octanes; X-ray diffraction; ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR dynamic spectroscopy

1. Introduction

Six-membered cyclic acetals and sulfites based on pro-pane-1,3-diols belong to the known heterocycles with a well established stereochemical behaviour. The distinctive feature of the chair-like 2-R-1,3-dioxanes and trimethylene sulfite is the opposite tendency in conformational preference of substituents at the second position. Thus, conformational equilibria of 2 -alkyl(aryl)-1,3-dioxanes are anancomerically shifted towards the forms bearing equatorial $\mathrm{C}-\mathrm{R}$ bond with $-\Delta \mathrm{G}^{0}$ values for Me and Ph amounting to 3.98 and $3.12 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively [1].

[^0]Chair form of trimethylene sulfite with SO axial, by contrast, proved to be $2-3.5 \mathrm{kcal} \mathrm{mol}^{-1}$ lower in energy $[2,3]$.

Non-chair twist-boat conformations take place in these systems for sterically overcrowded molecules only [4-10]. Seven-membered acetals [11-16] and sulfites [17-22] with planar cis-butylenic and orthoxylylenic fragments exhibit examples for which chair and twist-boat forms are close enough in energy. Experimental and theoretical results demonstrate the coexistence of both conformations in solution. It is necessary to stress that among two possible chair forms only the one being more stable for six-membered molecules is established.

[^0]: * Corresponding author. Tel.: +7 84323153 63; fax: +7 8432927278.

 E-mail address: Evgenii.Klimovitskii@ksu.ru (E.N. Klimovitskii).

