Spectroscopic study of the effect of N and F codoping on the spatial distribution of Er3+ dopant ions in vitreous SiO2

Gubaidullin R., Orlinskii S., Rakhmatullin R., Sen S. Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

Pulsed electron paramagnetic resonance (EPR) spectroscopy has been used to study the influence of codoping with N and/or F on the clustering of Er 3+ ions in vitreous SiO2. Measurements of echo-detected EPR, spin-lattice and phase memory relaxation times, and electron spin-echo envelope modulation (ESEEM) were made in the X band. Er-N, Er-F, and Er-F codoped glasses show clear evidence of clustering of Er3+ ions at concentration levels ranging between 6.67×1018 cm -3 and 6.67×1019 cm-3. However, the relatively long phase memory relaxation time and the observability of ESEEM in the Er-N-F codoped glass strongly indicate that combined codoping with N and F is more effective in homogenization of the spatial distribution of Er 3+ ions in vitreous SiO2, although, the structural mechanism remains unclear. The ESEEM results provide evidence in favor of the presence of N in the vicinity of the Er3+ ions in Er-N-F codoped vitreous SiO2. © 2007 American Institute of Physics.

http://dx.doi.org/10.1063/1.2713351