International Journal of Quantum Chemistry 2013 vol.113 N8, pages 1086-1094

Quantum chemical investigation on the reaction mechanism of tertiary phosphines with unsaturated carboxylic acids: An insight into kinetic data

Salin A., Aminova R., Galkin V. Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

The structures of intermediates and transition states in the reaction of tertiary phosphines with unsaturated carboxylic acids have been calculated at the B3LYP level of theory using the 6-31+G(d,p) basis set. Analysis of the results shows that [1,3]-intramolecular migration of carboxylic proton to carbanionic center of generated zwitterionic intermediate is strongly kinetically unfavorable, and external proton-donor source is essential to complete quaternization. A molecular cluster of the intermediate with one molecule of water has been modeled for intermolecular reaction pathway, but even in this case, the proton transfer remains to be the rate-determining step that is in a good agreement with previous kinetic investigations on this reaction. The data obtained for this reaction have much in common with recent studies on the mechanisms of the Morita-Baylis-Hillman reaction and phosphine-catalyzed [3+2] cycloaddition, which revealed paramount importance of proton-transfer steps. Copyright © 2012 Wiley Periodicals, Inc.

http://dx.doi.org/10.1002/qua.24161

Keywords

density functional theory, intermediates, intrinsic reaction coordinate, molecular cluster, proton transfer, tertiary phosphines, transition state, zwitterions