Role of calcium and potassium channels in effects of hydrogen sulfide on frog myocardial contractility

Sitdikova G., Khaertdinov N., Zefirov A. Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

The effects of sodium hydrosulfide NaHS, a donor of hydrogen sulfide H 2S, on the force of muscle contraction were examined on isolated myocardial strips from frog ventricles. NaHS decreased the amplitude of muscle contractions in a dose-dependent manner under normal conditions and during inhibition of Ca channels with nifedipine. In contrast, under conditions of blockade of ATP-dependent potassium channels with glibenclamide, NaHS exerted a positive inotropic effect from the first minute of application. Neither blockade, nor activation of ATP-dependent K-channels with glibenclamide modulated the negative inotropic effect of NaHS. Inhibition of K-channels with tetraethylammonium (TEA) (3, 5, 10 mM) or 4-aminopyridine increased the amplitude of myocardial contractions. Preliminary application of 4-aminopyridine or TEA (3 mM) did not eliminate NaHS-induced negative inotropic effect, although higher TEA concentrations (5 or 10 mM) prevented it. The data indicate that the targets of H2S in frog myocardium are ATP-dependent, Ca-activated, and voltage-dependent K-channels. © 2011 Springer Science+Business Media, Inc.

http://dx.doi.org/10.1007/s10517-011-1280-5

Keywords

ATP-dependent K-channels, Ca-activated K-channels, calcium channels, frog myocardium, hydrogen sulfide, voltage-dependent K-channels